Nonhomogeneous Response of Reaction-Diffusion Systems to Local Perturbations

  • B. Cayco
  • M. Feldman
  • V. Kanevsky
Conference paper
Part of the Woodward Conference book series (WOODWARD)


We investigated the behavior of the Brusselator, a model of a biochemical reaction. We will show that the system’s response to local perturbations depends upon the points where the perturbations have been applied. We have also discovered the universality of the approach to a stable solution along the trajectory of this system.


Inflection Point Stable Solution External Action Dissipative Structure Local Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Turing, “The Chemical Basis of the Morphogenesis”, Proc. Roy. Soc.B 237, 37–71, (1952).Google Scholar
  2. 2.
    V. Castets, E. Dulos, J. Boissonade, and P. de Kepper, Phys. Rev. Lett. 64, 2953 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    I. Lengyel and I. R. Epstein, “Modeling of Turing Structures in the Chlorite-Iodide-Malonic Acid-Starch Reaction System”, Science 251, 650–652, (1991).ADSCrossRefGoogle Scholar
  4. 4.
    A. Arneodo, J. Elezgaray, J. Pearson and T. Russo, “Instabilities of Front Patterns in Reaction-Diffusion Systems”, Physica D 49, 141–160, (1991).ADSCrossRefGoogle Scholar
  5. 5.
    P. Glansdorff and E. Prigogine, Thermodynamics Theory of Structure, Stability and Fluctuations ( Wiley, New York, 1971 ).Google Scholar
  6. 6.
    G. Nicolis and E. Prigogine, Self-Organization in Non-equilibrium Systems ( Wiley, New York, 1977 ).Google Scholar
  7. 7.
    J. M. Ortega and W. G. Poole Jr, An Introduction to Numerical Methods for Differential Equations ( Pittman, Marshfield, 1981 ).MATHGoogle Scholar
  8. 8.
    Yu. M. Romanovskii, N. V. Stepanova, and D. S. Chernayskii, Mathematical Biophysics ( Nauka, Moskow, 1984 ).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • B. Cayco
    • 1
  • M. Feldman
    • 2
  • V. Kanevsky
    • 1
  1. 1.Department of Mathematics and Computer ScienceSan Jose State UniversitySan JoseUSA
  2. 2.Decision Focus IncorporatedLos AltosUSA

Personalised recommendations