Skip to main content

An augmented drift-diffusion formulation in semiconductor devices

  • Chapter
Mathematics in Industrial Problems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 38))

  • 209 Accesses

Abstract

The widely used drift-diffusion approximation model of charge transport employs transport coefficients that depend on the local values of the electric field, doping and lattice temperature. Nonlocal effects such as velocity overshoot become important when device feature sizes have submicron dimensions. A hierarchy of higher order transport models is used to model such effects. These give good results but require the solution of additional equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Hess, Advanced Theory of Semiconductor Devices, Prentice Hall, Englewood Cliffs, New Jersey (1988).

    Google Scholar 

  2. K. Bløtekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices, 17 (1970), 38–47.

    Article  Google Scholar 

  3. P.A. Sandborn, A. Rao and P.A. Blakey, An assessment of approximate nonstationary charge transport model used for GaAs device modeling, IEEE Trans. Electron Devices, 36 (1989), 1244–1253.

    Article  Google Scholar 

  4. P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer Verlag, Wien-New York (1990).

    Book  MATH  Google Scholar 

  5. K.K. Thornber, Current equations for velocity overshoot, IEEE Electron Device Lett., 3 (1982), 69–71.

    Article  Google Scholar 

  6. P.J. Price, On the flow equation in device simulation, J. Appl. Phys., 53 (1988), 4718–4722.

    Article  Google Scholar 

  7. P.A. Blakey, S.A. Burdick and P.A. Sandborn, On the use of Thornber’s augmented drift-diffusion equation for modeling GaAs devices, IEEE Trans. Electron Devices, 35 (1988), 1991–1994.

    Article  Google Scholar 

  8. P.A. Blakey, C.M. Maziar and X.-L. Wang A generalized formulation of augmented drift-diffusion for use in semiconductor device modeling, Submitted to IEEE Trans. Electron Devices.

    Google Scholar 

  9. M.S. Mock, Analysis of Mathematical Models of Semiconductor Devices, Boole Press, Dublin (1983).

    MATH  Google Scholar 

  10. P.A. Markowich, The Stationary Semiconductor Device Equations, Springer Verlag, Wien-New York (1986).

    Google Scholar 

  11. A. Friedman and W. Liu, An augmented drift-diffusion model in semiconductor device, J. Math. Anal. Appl., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Friedman, A. (1991). An augmented drift-diffusion formulation in semiconductor devices. In: Mathematics in Industrial Problems. The IMA Volumes in Mathematics and its Applications, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9177-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9177-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9179-1

  • Online ISBN: 978-1-4613-9177-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics