Skip to main content

Lower Bounds of the Life-Span of Small Classical Solutions for Nonlinear Wave Equations

  • Conference paper
Book cover Microlocal Analysis and Nonlinear Waves

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 30))

Abstract

In a unified and simple way we get lower bounds of the life-span of classical solutions to the Cauchy problem with small initial data for fully nonlinear wave equations of the general form □u = F(u, Du, D x Du) for the space dimension n ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Caffarelli and A. Friedman, Differentiability of the blow-up curve for one dimensional nonlinear wave equations, Arch. Rat. Mech. Anal., 91 (1985), pp. 83–98.

    Article  MathSciNet  MATH  Google Scholar 

  2. L.A. Caffarelli and A. Friedman, The blow-up boundary for nonlinear wave equations, Tran. Amer. Math. Soc., 297 (1986), pp. 223–241.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen Yun-mei, The life span of the solutions to Cauchy problems for nonlinear wave equations, Nonlinear Analysis, Theory, Methods and Applications (to appear).

    Google Scholar 

  4. D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), pp. 267–282.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Hörmander, The lifespan of classical solutions of non-linear hyperbolic equations, Institut Mittag-Leffler, Report No. 5 (1985).

    Google Scholar 

  6. L. Hörmander, On the fully non linear Cauchy problem with small data, Colloque en l’honneur de Jacques-Louis Lions, Paris (1988).

    Google Scholar 

  7. F. John, Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math., 34 (1981), pp. 29–51.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. John, Lower bounds for the life span of solutions of nonlinear wave equations in three dimensions, Comm. Pure Appl. Math., 36 (1983), pp. 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. John, Non-existence of global solutions of \( \square u = \frac{\partial }{{{\partial_t}}}F({u_t}) \) in two and three space dimensions, MRC Technical Summary Report (1984).

    Google Scholar 

  10. F. John, Solutions of quasi-linear wave equations with small initial data. The third phase, Colloque international, Problèmes hyperboliques non linéaires, Bordeaux (1988).

    Google Scholar 

  11. F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., 37 (1984), pp. 443–455.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Klainerman, On “almost global” solutions to quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math., 36 (1983), pp. 325–344.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), pp. 321–332.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36 (1983), pp. 133–141.

    MathSciNet  MATH  Google Scholar 

  15. M. Kovalyov, Long-time behavior of solutions of a, system of nonlinear wave equations, Commu. in Partial Differential Equations, 12 (1987), pp. 471–501.

    Article  MathSciNet  MATH  Google Scholar 

  16. P.D. Lax, Development of singularities of nonlinear hyperbolic partial differential equations, J. Math. Phys., (1964), pp. 611–613.

    Google Scholar 

  17. Li Ta-tsien and Chen Yun-mei, Initial value problems for nonlinear wave equations, Commu. in Partial Differential Equations, 13 (1988), pp. 383–422.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.L. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Diff. Equations, 46 (1982), pp. 409–425.

    Article  MathSciNet  MATH  Google Scholar 

  19. T.C. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions, Commu. in Partial Differential Equations, 8 (1983), pp. 1291–1323.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. von Wahl, Über die klassische Lösbarkeit des Cauchy-Problems für nichtlineare Wellengleichungen bei kleinen Anfangswerten und das asymptotische Verhalten der Lösungen, Math. Z., 114 (1970), pp. 281–299.

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Ta-tsien, Yu Xin and Zhou Yi, Life-span of classical solutions to one dimensional nonlinear wave equations, Preprint, Pudan University (1990).

    Google Scholar 

  22. Li Ta-tsien and Zhou Yi, Nonlinear stability for two space dimensional wave equations with higher order perturbations, Preprint, Fudan University (1990).

    Google Scholar 

  23. Li Ta-tsien and Zhou Yi, Life-span of classical solutions to fully nonlinear wave equations in two space dimensions, Preprint, Fudan Unviersity (1990).

    Google Scholar 

  24. Li Ta-tsien and Zhou Yi, Life-span of classical solutions to fully nonlinear wave equations in two space dimensions II, Preprint, Fudan University (1990).

    Google Scholar 

  25. Li Ta-tsien and Yu Xin, Life-span of classical solutions to fully nonlinear wave equations, Preprint, Fudan University (1990).

    Google Scholar 

  26. Li Ta-tsien and Zhou Yi, Life-span of classical solutions to fully nonlinear wave equations II, Preprint, Fudan University (1990).

    Google Scholar 

  27. L. Hörmander, On the fully non-linear Cauchy problem with small data II, Preprint, University of Lund (1989).

    Google Scholar 

  28. H. Lindblad, On the lifespan of solutions of nonlinear wave equations with small initial data, Comm. Pure Appl. Math., 43 (1990), pp. 445–472.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kong De-xing, Life span of classical solutions to quasilinear reducible hyperbolic systems and its applications, Chin. Ann. of Math., Series A (to appear).

    Google Scholar 

  30. Zhou Yi, Blow-up of solutions to the Cauchy problem for nonlinear wave equations with small initial data, Preprint, Fudan University (1990).

    Google Scholar 

  31. Zhou Yi, Life span of classical solutions to u tt - u xx = │u1+α, Chin. Ann. of Math., Series B (to appear).

    Google Scholar 

  32. Zhou Yi, Life span of classical solutions tou = │up in two space dimensions, Preprint, Fudan University (1990).

    Google Scholar 

  33. Zhou Yi, Blow up of classical solutions tou = │up in three space dimensions, Preprint, Fudan University (1990).

    Google Scholar 

  34. H. Lindblad, Blow up for solutions ofu = │up with small initial data, Thesis, Lund (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Ta-Tsien, L. (1991). Lower Bounds of the Life-Span of Small Classical Solutions for Nonlinear Wave Equations. In: Beals, M., Melrose, R.B., Rauch, J. (eds) Microlocal Analysis and Nonlinear Waves. The IMA Volumes in Mathematics and its Applications, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9136-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9136-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9138-8

  • Online ISBN: 978-1-4613-9136-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics