Skip to main content

On the Fully Non-Linear Cauchy Problem with Small Data. II.

  • Conference paper
Microlocal Analysis and Nonlinear Waves

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 30))

Abstract

This paper is one of a series devoted to the Cauchy problem for an equation of the form

$$ \square u = G(u,u',u'') $$
((1.1))

with small Cauchy data

$$ u = \varepsilon {u_0},\quad {\partial_t}u = \varepsilon {u_1},\quad {\text{when}}\,{\text{t = 0}} $$
((1.2))

Here □ = 2 t − Δ is the wave operator in R 1+n, with variables denoted by t = x 0 and x = (x1,..., x n ), G is a C function vanishing of second order at the origin, u′ and u″ denote all first and second order derivates of u, and u j C 0 . General results have been obtained with simple proofs based on the idea of Klainerman [13] to use enrgy integral estimates for all equations obtained from (1.1) by multiplication with any product Iof │I│ vector fields ∂/∂x j , j = 0, …, n, the infinitesimal generators of the Lorents group

$$ \begin{gathered} {Z_{{jk}}} = {x_k}\partial /\partial {x_j} - {x_j}\partial /\partial {x_k},\quad j,\,k = 1,...,n, \hfill \\ {Z_{{0k}}} = {x_0}\partial /\partial {x_k} + {x_k}\partial /\partial {x_0} = - {Z_{{k0}}},\quad k = 1,...,n, \hfill \\ \end{gathered} $$
((1.3))

which commute with □, and the radial vector field

$$ {Z_0} = \sum\limits_0^n {{x_j}\partial /\partial {x_j}} $$
((1.4))

(We shall use the notation Z I for products of the vector fields (1.3), (1.4) only; note that these preserve homogeneity.) However, in low dimension the results are not always optimal when G depends on u itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Aronszajn, Boundary values of functions with a finite Dirichlet integral., in Conference on Partial Differential Equations 1954, University of Kansas, pp. 77–94.

    Google Scholar 

  2. A.P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci., U.S.A., 74 (1977), pp. 1324–1327.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), pp. 267–282.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier Grenoble, 28:3 (1978), pp. 177–202.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math., 120 (1984), pp. 371–397.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rat. Mech. Anal., 25 (1967), pp. 40–63.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Hörmander, On Sobolev spaces associated with some Lie algebras, in Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 261–287.

    Google Scholar 

  8. L. Hörmander, L 1 , L estimates for the wave operator, in Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, pp. 211–234.

    Google Scholar 

  9. L. Hörmander, On the fully non-linear Cauchy problem with small data, Bol. Soc. Brasil. Mat. To appear.

    Google Scholar 

  10. L. Hörmander, The analysis of linear partial differential operators III., Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.

    Google Scholar 

  11. F. John, Blowup of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), pp. 235–268.

    Article  MATH  Google Scholar 

  12. F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., 37 (1984), pp. 443–455.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), pp. 321–332.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Klainerman, The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics, 23 (1986), pp. 293–326.

    MathSciNet  Google Scholar 

  15. S. Klainerman, Long time behaviour of solutions to nonlinear wave equations, in Proc. Int. Congr. Math., Warszawa., 1983, pp. 1209–1215.

    Google Scholar 

  16. Li Ta-Tsien and Chen Yun-mei, Initial value problems for nonlinear wave equations, Comm. Partial Diff. Eq., 13 (1988), pp. 383–422.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Lindblad, Blowup for solutions ofu = │u│ p with small data. Thesis, Lund 1989.

    Google Scholar 

  18. H. Lindblad, On the lifespan of solutions of nonlinear wave equations with small initial data. Preprint 1989.

    Google Scholar 

  19. L. N. Slobodeckiĭ, Generalized S. L. Sobolev spaces and their application to boundary value problems for partial differential equations, Uch. Zap. Leningrad ped. Inst. Herzen, 198 (1958), pp. 54–112. (Russian)

    Google Scholar 

  20. W. Von Wahl, Über die klassische Lösbarkeit des Cauchy-Problems für nichtlineare Wellengleichungen bei kleinen Anfangswerten und das asymptotische Verhalten der Lösungen, Math. Z., 114 (1970), pp. 281–299.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Hörmander, L. (1991). On the Fully Non-Linear Cauchy Problem with Small Data. II.. In: Beals, M., Melrose, R.B., Rauch, J. (eds) Microlocal Analysis and Nonlinear Waves. The IMA Volumes in Mathematics and its Applications, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9136-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9136-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9138-8

  • Online ISBN: 978-1-4613-9136-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics