Skip to main content

The Approximation of Weak Solutions to the 2-D Euler Equations by Vortex Elements

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 29))

Abstract

It is shown that the Euler equations of two-dimensional incompressible flow, with initial vorticity in L p, p > 1, possess weak solutions which may be obtained as a limit of vortex “blobs”; i.e., the vorticity is approximated by a finite sum of cores of prescribed shape which are advected according to the corresponding velocity field. If the vorticity is instead a finite measure of bounded support, such approximations lead to a measure-valued solution of the Euler equations in the sense of DiPerna and Majda [7]. The analysis is closely related to that of [7].

Research supported by D.A.R.P.A. Grant N00014-86-K-0759 and N.S.F. Grant. DMS-8800347.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels, J. Comput. Phys., 58 (1985), pp. 188–208.

    Article  MATH  Google Scholar 

  2. J. T. Beale and A. Majda, Vortex methods for fluid flow in two or three dimensions, Contemp. Math., 23 (1984), pp. 221–229.

    MathSciNet  Google Scholar 

  3. R. Caflisch and J. Lowengrub, Convergence of the vortex method for vortex sheets, preprint.

    Google Scholar 

  4. J. P. Choquin, G. H. Cottet, and S. Mas-Gallic, On the validity of vortex methods for nonsmooth flows, in Vortex Methods (C. Anderson and C. Greengard, editors), Lecture Notes in Mathematics, Springer-Verlag, pp. 56–67.

    Google Scholar 

  5. G.H. Cottet, Thèse d’Etat, Université Pierre et Marie Curie.

    Google Scholar 

  6. R. DiPerna and A. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Commun. Math. Phys., 108 (1987), pp. 667–689.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. DiPerna and A. Majda, Concentrations and regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., 60 (1987), pp. 301–45.

    Article  MathSciNet  Google Scholar 

  8. R. DiPerna and A. Majda, Reduced Hausdorff dimension and concentration- cancellation for 2-D incompressible flow, J. Amer. Math. Soc, 1 (1988), pp. 59–95.

    MathSciNet  MATH  Google Scholar 

  9. J. Goodman, T. Hou, and J. Lowengrub, Convergence of the point vortex method for the 2-D Euler equations, preprint.

    Google Scholar 

  10. C. Greengard and E. Thomann, On DiPerna-Majda concentration sets for two-dimensional incompressible flow, Comm. Pure Appl. Math., 41 (1988), pp. 295–303.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Hald, The convegence of vortex methods, II, SIAM J. Numer. Anal., 16 (1979), pp. 726–755.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys., 65 (1986), pp. 292–313.

    Article  MATH  Google Scholar 

  13. R. Krasny, Computation of vortex sheet roll-up in the Trefftz plane, J. Fluid Mech., 184 (1987), p. 123.

    Article  Google Scholar 

  14. R. Krasny, Computation of vortex sheet roll-up, in Vortex Methods (C. Anderson and C. Greengard, editors), Lecture Notes in Mathematics, Springer- Verlag, pp. 9–22.

    Google Scholar 

  15. J. Lowengrub, Convergence of the vortex method for vortex sheets, Thesis, New York University, 1988.

    Google Scholar 

  16. A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math., 39 (1986), pp. S187–S220.

    Article  MathSciNet  Google Scholar 

  17. A. Majda, Mathematical fluid dynamics: the interaction of nonlinear analysis and modern applied mathematics, to appear in the Proc. of the Centennial Celebration of the Amer. Math. Society.

    Google Scholar 

  18. C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Commun. Math. Phys., 84 (1982), pp. 483–503.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Shelley and G. Baker, On the relation between thin vortex layers and vortex sheets: Part 2, numerical study, preprint.

    Google Scholar 

  20. R. Temam, The Navier-Stokes Equations, North-Holland, Amsterdam, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Beale, J.T. (1991). The Approximation of Weak Solutions to the 2-D Euler Equations by Vortex Elements. In: Glimm, J., Majda, A.J. (eds) Multidimensional Hyperbolic Problems and Computations. The IMA Volumes in Mathematics and Its Applications, vol 29. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9121-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9121-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9123-4

  • Online ISBN: 978-1-4613-9121-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics