Skip to main content

An Introduction to Weakly Nonlinear Geometrical Optics

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 29))

Abstract

Many natural phenomenae are governed by systems of nonlinear conservation laws that are — in a first approximation — hyperbolic. In this context, the understanding of the laws governing the propagation and interaction of small but finite amplitude high frequency waves in hyperbolic P.D.E.’s, and their interactions with “large scale” phenomenae (mean flows, shear layers, shock and detonation waves, etc.) is very important. Weakly Nonlinear Geometrical Optics (W.N.G.O.) is an asymptotic formal theory whose objective is precisely to do this.

In this paper we review the theory of W.N.G.O. as it stands currently. An important point is that W.N.G.O. is not (yet?) a complete theory. It fails at caustics, singular rays, etc. Since these are frequently regions of physical interest, a good theory for what happens there is important — and mostly nonexistent. The current status of these important open problems will also be (briefly) reviewed.

This work was partially supported by grant NSF #DMS-8702625 and was performed, in part, while the author visited the IMA during April 1989.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artola, M. and Majda, A., Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Physica D, 28 (1987), pp. 253–281.

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, R. F., Majda, A. and Rosales, R. R., Rapid initiation in condensed phases through resonant nonlinear acoustics. In preparation (1989).

    Google Scholar 

  3. Almgren, R. F., Majda, A. and Rosales, R. R., Dynamic homogenization of reacting materials. II. Numerical results. In preparation (1989).

    Google Scholar 

  4. Ablowitz, M. and Segur, H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    MATH  Google Scholar 

  5. Bergmann, P.G., Basic Theories of Physics, Dover, New York (1962).

    MATH  Google Scholar 

  6. Buchal, R. N. and Keller, J. B., Boundary layer problems in diffraction theory, Comm. Pure Appl. Math., 13 (1960), pp. 85–114.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bensoussan, B., Lions, J.-L. and Papanicolau, G., Asymptotic analysis for periodic structures, North Holland, Amsterdam (1978).

    MATH  Google Scholar 

  8. Cole, J. D., Modern developments in transonic flow, SIAM J. Appl. Math., 29 (1975), pp. 763–787.

    Article  MathSciNet  MATH  Google Scholar 

  9. Craik, A. D., Two- and Three-wave Resonance in Nonlinear Waves, in Nonlinear Waves (L. Debnath, ed.), Cambridge U.P., New York (1983).

    Google Scholar 

  10. Choquet-Bruhat, Y., Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires, J. Math. Pures et Appl., 48 (1969), pp. 117–158.

    MathSciNet  MATH  Google Scholar 

  11. Choi, Y. S. and Majda, A., Amplification of small amplitude high frequency waves in a reactive mixture. To appear in SIAM Review, 1989.

    Google Scholar 

  12. Cehelsky, P. and Rosales, R. R., Resonantly interacting weekly nonlinear hyperbolic waves in the presence of shocks: A single space variable in a homogeneous, time independent medium, Stud. Appl. Math., 73 (1986), pp. 117–138.

    MathSciNet  Google Scholar 

  13. Cramer, M. S. and Seebass, A. R., Focusing of weak shock waves at an arête, J. Fluid Mech., 88 (1978), pp. 209–222.

    Article  MATH  Google Scholar 

  14. Di Perna, R. and Majda, A., The validity of Geometrical Optics for weak solutions of conservation laws, Comm. Math. Physics, 98 (1985), pp. 313–347.

    Article  MATH  Google Scholar 

  15. Hunter, J. K., Transverse diffraction of nonlinear waves and Singular Rays, SIAM J. Appl. Math., 48 (1988), pp. 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hunter, J. K., A ray method for slowly modulated nonlinear waves, SIAM J. Appl. Math., 45 (1985), pp. 735–749.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hunter, J. K. and Keller, J. B., Weakly nonlinear, high-frequency waves, Comm. Pure Appl. Math., 36 (1983), pp. 547–569.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hunter, J. and Keller, J. B., Caustics of nonlinear waves, Wave Motion, 9 (1987), pp. 429–443.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hunter, J. K., Majda, A. and Rosales, R. R., Resonantly interacting, weakly nonlinear, hyperbolic waves. II. Several space variables, Stud. Appl. Math., 75 (1986), pp. 187–226.

    MathSciNet  MATH  Google Scholar 

  20. Keller, J. B., Rays, waves and asymptotics, Bull. Am. Math. Soc., 84 (1978), pp. 727–750.

    Article  MATH  Google Scholar 

  21. Kevorkian, J. and Cole, J. D., Perturbation methods in Aplied Mathematics, Springer-Verlag, New York (1980).

    Google Scholar 

  22. Landau, L. D., On shock waves at large distances from their place of origin, J. Phys. U.S.S.R., 9 (1945), pp. 495–500.

    Google Scholar 

  23. Lax, P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves. SIAM Regional Conf. Ser. in Appl. Math., No 11, (1973).

    MATH  Google Scholar 

  24. Lighthill, M. J., A technique for rendering approximate solutions to physical problems uniformly valid, Phil. Mag., 44 (1949), pp. 1179–1201.

    MathSciNet  Google Scholar 

  25. Ludwig, D., Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math., 19 (1966), pp. 215–250.

    Article  MathSciNet  MATH  Google Scholar 

  26. Majda, A. J., Criteria for regular spacing of reacting Mach stems, Proc. Natl. Acad. Sci. USA, 84 (1987), pp. 6011–6014.

    Article  MathSciNet  MATH  Google Scholar 

  27. Majda, A. J. and Artola, M., Nonlinear Geometric Optics for hyperbolic mixed problems, in Analyse Mathématique et Applications (volume in honor of J.-L. Lions 60th birthday; C. Agmon, A. V. Ballakrishnan, J. M. Ball and L. Caffarelli, eds.), Gauthier-Villars, Paris (1988), pp. 319–356.

    Google Scholar 

  28. Majda, A. and Pego, R., Stable viscosity matrices for systems of conservation laws, Journal of Differential Equations, 56 (1985), pp. 229–262.

    Article  MathSciNet  MATH  Google Scholar 

  29. McLaughlin, D., Papanicolau, G. and Tartar, L., Weak limits of semi-linear conservation laws with oscillating data, private communication.

    Google Scholar 

  30. Majda, A. and Rosales, R. R., A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis, SIAM J. Appl. Math., 43 (1983), pp. 1310–1334.

    Article  MathSciNet  MATH  Google Scholar 

  31. Majda, A. and Rosales, R. R., Resonantly interacting weakly nonlinear hyperbolic waves. I. A single space variable, Stud. Appl. Math., 71 (1984), pp. 149–179.

    MathSciNet  MATH  Google Scholar 

  32. Majda, A. and Rosales, R. R., Nonlinear Mean Field — High Frequency wave interactions in the Induction Zone, SIAM J. Appl. Math., 47 (1987), pp. 1017–1039.

    Article  MathSciNet  MATH  Google Scholar 

  33. Majda, A., Rosales, R. R. and Almgren, R. F., Dynamic homogenization of reacting materials. I. The asymptotic equations. In preparation (1989).

    Google Scholar 

  34. Majda, A., Rosales, R. R. and Schonbek, M., A canonical system of integrodifferential equations arising in resonant nonlinear acoustics, Stud. Appl. Math., 79 (1988), pp. 205–262.

    MathSciNet  MATH  Google Scholar 

  35. Pego, R. L., Some explicit resonating waves in weakly nonlinear gas dynamics, Stud. Appl. Math., 79 (1988), pp. 263–270.

    MathSciNet  MATH  Google Scholar 

  36. Rosales, R. R., Stability theory for shocks in reacting media: Mach stems in detonation waves, in AMS Lectures in Applied Mathematics, 24 (1986), G. S. S. Ludford, ed., pp. 431–465.

    Google Scholar 

  37. Rosales, R. R., Diffraction effects in weakly nonlinear detonation waves,to appear in Proceedings of the “Seminaire International sur les Problèmes Hyperboliques de Bordeaux”, Bordeaux, June 1988, Springer Verlag “Lecture Notes”.

    Google Scholar 

  38. Rosales, R. R., Canonical Equations of Long Wave Weakly Nonlinear Asymptotics, in Continum Mechanics and its Applications (G.A.C. Graham and S.K. Malik, ed.), Hemisphere, New York (1989), pp. 365–397.

    Google Scholar 

  39. Rosales, R. R. and Majda, A., Weakly nonlinear detonation waves, SIAM J. Appl. Math., 43 (1983), pp. 1086–1118.

    Article  MathSciNet  MATH  Google Scholar 

  40. Sturtevant, B. and Kulkarny, V. A., The focusing of weak shock waves, J. Fluid Mech., 73 (1976), pp. 651–671.

    Article  Google Scholar 

  41. Whitham, G. B., Linear and Nonlinear Waves, Wiley, New York (1974).

    MATH  Google Scholar 

  42. Whitham, G. B., The flow pattern of a supersonic projectile, Comm. Pure Appl. Math., 5 (1952), pp. 301–348.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Rosales, R.R. (1991). An Introduction to Weakly Nonlinear Geometrical Optics. In: Glimm, J., Majda, A.J. (eds) Multidimensional Hyperbolic Problems and Computations. The IMA Volumes in Mathematics and Its Applications, vol 29. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9121-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9121-0_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9123-4

  • Online ISBN: 978-1-4613-9121-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics