Skip to main content

Static and Fatigue Biaxial Testing of Fiber Composites Using Thin Walled Tubular Specimens

  • Conference paper
Book cover Inelastic Deformation of Composite Materials

Abstract

A design and analysis of a multiaxial fatigue system employed for the testing of high performance continous fiber laminates are presented. A multiaxial laminate specimen based on axial-force and torsion loading of a thin walled tube has been developed which is appropriate for static and fatigue biaxial testing. The room temperature static biaxial tests and R=-1 fatigue biaxial tests at 1 Hz are also reported. In addition recent results on the biaxial failure of glass fiber/epoxy [0°] and [±45°]s tubes are presented and compared with theoretical failure envelopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashkenazi, E.K., 1959, “On the Problem of Strength Orthotropy of Construction Materials”, Soviet Physics-Tech Physics, Vol.4, No.9, pp.333–338.

    Google Scholar 

  • Bathias, C., 1989, “The Fatigue of High Performance Composite Materials”, Advances in Fatigue Science and Technology, C. Moura Branco and L. Guerra Rosa, Eds., pp.659–676.

    Google Scholar 

  • Choo, V.K.S. and Hull, D., 1983, “Influence of Radial Compressive Stress Owing to Pressure on the Failure Modes of Composite Tube Specimens”, Journal of Composite Materials, pp.344–356.

    Google Scholar 

  • Choo, V.K.S., 1985, “Effect of Loading Path on the Failure of Fiber Reinforced Composite Tubes”, Journal of Composite Materials, Vol.19, pp.525–532.

    Article  Google Scholar 

  • Daniel, I.M. et al., 1980 “Analysis of Tubular Specimen for Biaxial Testing of Composite Laminates”, Proc. 3rd ICCM, Paris-1, 840–855.

    Google Scholar 

  • Duggen, M.F. and Bailie J.A., 1980, “A New Test Specimen Geometry for Achieving Uniform Biaxial Stress Distribution in Laminated Composite Cylinders”, Proc.3rd ICCM, Paris-1, pp.900–913.

    Google Scholar 

  • Eckold, G.C., Leadbetter, D., Soden, P.D. and Grigss, P.R., 1978, “Lamination Theory in the Prediction of Failure Envelopes for Filament Wound Materials Subjected to Biaxial Loading”, Composites, pp.243.

    Google Scholar 

  • Foral, R.F. and Humphrey, W.D., 1985, “Biaxial Stress Testing of Intraply Hybrid Composites”, Journal Comp.Tech. and Res. 7(1), pp.19–25.

    Article  CAS  Google Scholar 

  • Found, M.S., 1985, “A Review of the Multiaxial Fatigue Testing of Fiber Reinforced Plastics”, Multiaxial Fatigue, ASTM STP 853, K.J. Miller and M.W. Brown, Eds., American Society for Testing and Materials, Philadelphia, pp. 381–395.

    Google Scholar 

  • Francis, P.H., et.al., 1977, “Biaxial Fatigue Loading of Notched Composites”, NASA-CR-45198.

    Google Scholar 

  • Francis, P.H., Walrath, D.E., Sims, D.F. and Weed, D.N., 1977, “Biaxial Fatigue Loading of Notched Composites” J of Composite Materials, pp.488–501.

    Google Scholar 

  • Francis, P.H., Walrath, D.E., and Weed, D.N., 1979, “First Ply Fatigue of G/E Laminates under biaxial Loadings”, Fibre Science and Technology, 12, pp.97–110.

    Article  Google Scholar 

  • Fujczak, R.R., 1978, “Torsional Fatigue Behavior of Graphite-Epoxy Cylinders”, Proceeding of International Conference on Composite Materials, Toronto, American Inst. of Mining, Metallurgical and Petroleum Engineers Corp.,pp.635–647.

    Google Scholar 

  • Guess, T.R. and Gerstle, F.P., 1977, “Deformation and Fracture of Resin Matrix Composites in Combined Stress States”, Journal of Composite Materials, 11, pp. 146–163.

    Article  CAS  Google Scholar 

  • Guess, T.R., 1980, “Biaxial Testing of Composite Cylinders Experimental-Theoritical Comparison”, Composites, pp. 139–148.

    Google Scholar 

  • Hashin, Z., and Rotem, Z., 1973, “ A Fatigue Failure Criterion for Fiber Reinforced Materials”, j of Composite Materials, Vol 7, pp.448–464.

    Article  Google Scholar 

  • Highton, J. and Soden, P.D., 1982, “End Reinforcement and Grips for Anisotropic Tubes”, J. of Strain Analysis, Vol.17, No. 1, pp.31–43.

    Article  Google Scholar 

  • Hitchon, J.W. and Philips, D.C, 1978, “The Effect of Specimen Size on the Strength of cfrp”, Composites, pp. 119–124.

    Google Scholar 

  • Hotter, U., Scheling, H., Krauss, H., 1964, “An Experimental Study to Determine Failure Enveloppe of Composite Material with Tubular Specimens under Combined Loads and Comparison between Several Classical Criteria”, Agard CP 163, pp.3.1–3.11.

    Google Scholar 

  • Kim, H.C. and Ebert, I.J., “Axial Fatigue Failure Sequence and Mechanism in Unidirectional Fiber Glass Composites”, J. of Composites Materials, Vol. 12.

    Google Scholar 

  • Krempl, E. and Niu, Tim, 1982, “Graphite/Epoxy [±45°]s Tubes Their Static Axial and Shear Properties and Their Fatigue Behavior under Completely Reversed Load Controlled Loading”, J. of Composite Materials, Vol.16, p.172.

    Article  CAS  Google Scholar 

  • Meshkov, E.V.et.al., 1982, “Effect of Structural Parameters of Fiber-Glass on its Strength under a Complex Stressed State”, Mechanics of Composite Materials, 18(3), pp.299–302.

    Article  Google Scholar 

  • Nahas, M.N., 1986.“Survey of Failure and Post Failure Theories of Laminated Fiber-Reinforced Composites” J of Comp.Tech & Res. vol.8.No.4.pp.l38–153.

    Google Scholar 

  • Norris, C.B. 1950, “Strength of Orthotropic Materials Subjected to Combined Stresses”, Report 1816, Forest Product Lab.Madison, NIS.

    Google Scholar 

  • Norris, C.B. and Mc Kinnon, P.F.1956. “Compression, Tension and Shear Tests on Yellow Poplar Plywood Panels of Sizes that do not Buckle with tests Made at Variou Angle to the Face Grain”, Report No. 1328, US Forest Product Lab.

    Google Scholar 

  • Owen, M.J. and Griffiths, J.R., 1978, “Evaluation of Biaxial Stress Failure Surfaces for a Glass Fabric Reinforced Polyester Resin under Static and Fatigue Loading”, J. of Material Science, 13, No.7, pp. 1521–1537.

    Article  CAS  Google Scholar 

  • Owen, M.J. and Rice, D.J., 1984, “Biaxial Strength Behavior of Glass Fabric-Reinforced Polyester Resins”, Composites, pp. 13–25.

    Google Scholar 

  • Pluvinage, P., 1987, “Etude du Comportement en Fatigue Biaxiale de Cylindres Creux en Composite Verre/Epoxy”, DEA Thesis. Université de Technologie de Compiegne, France.

    Google Scholar 

  • Snell, M.B., 1978, “Strength and Elastic Response of Symmetric Angle-Ply CFRP”, Composites, pp.167–176

    Google Scholar 

  • Soemardi, T.P., Lai, D., and Bathias, C., 1988, Etude du Comportement et de l’Endommagement en Fatigue Biaxiale de Cylindres Creux en Composite Verre/Epoxy, Rapport Intermediare ITMA-RNUR, pp.67–78.

    Google Scholar 

  • Soemardi, T.P., Lai, D., and Bathias, C., 1989, “Etude du Comportement Mecanique de Tube en Materiaux Composites Soumis à des Sollicitations Axiales at Biaxèe”, Rapport Final ITMA-RNUR, pp.25–26.

    Google Scholar 

  • Swanson, S.R., Messick, M., and Tian, Z., 1987, “Failure of Carbon/Epoxy Laminate under Combined Stress”, J. of Composite Materials. Vol. 21, pp.619–630.

    Article  CAS  Google Scholar 

  • Swanson, S.R., and Trask, B.C., 1989, “Strength of Quasi-Isotropic Laminates under Off-Axis Loading”, CompSci. and Tech., 34, 19–34.

    Article  CAS  Google Scholar 

  • Swanson, S.R., Christoforou, A.P., and Colvin, Jr., G.E., 1988, “Biaxial Testing of Fiber Composites Using Tubular Specimens”, Experimental Mechanics, pp.238–243.

    Google Scholar 

  • Tennyson, R.C., MacDonald, D., and Nanyard, A.P., 1978, “Evaluation of the Tensor Polynomial Failure Criterion for Composite Materials”, J. of Composite Materials, 12, pp.63–75.

    Article  CAS  Google Scholar 

  • Tsai, S.W., and WU, E.M., 1971, “A General Theory of Strength of Anisotropic Materials”, J. of Composite Materials, 5, pp.58–80.

    Article  Google Scholar 

  • Tsai, S.W.,1988, “Composites Design 1988”, Think Composites, Dayton.OH.

    Google Scholar 

  • Whitney, J.M., Grimes, G.C., and Francis, P.H., 1973, “Effect of End Attachment on the Strength of Fiber-Reinforced Composite Cylinders”, Experimental Mechanics, 13(5), pp. 185–192.

    Article  Google Scholar 

  • Wu, E.H., 1972, “Optimal Experimental Measurement of Anisotropic Failure Tensors”, J. of Composite Materials, pp.472–489.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Soemardi, T.P., Lai, D., Bathias, C. (1991). Static and Fatigue Biaxial Testing of Fiber Composites Using Thin Walled Tubular Specimens. In: Dvorak, G.J. (eds) Inelastic Deformation of Composite Materials. International Union of Theoretical and Applied Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9109-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9109-8_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9111-1

  • Online ISBN: 978-1-4613-9109-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics