A Computer-Assisted Approach to Small-Divisors Problems Arising in Hamiltonian Mechanics

  • Alessandra Celletti
  • Luigi Chierchia
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 28)

Abstract

One of the most powerful and versatile tools in the study of invariant surfaces for conservative dynamical systems relies upon KAM theory ([14], [1], [16], [17], [7], [19], [12], [20]). However, because of the apparently stringent quantitative requirements, such theory has been (and often still is) considered not too well suited for concrete applications. Nevertheless, in [3], [5], [6], [21] and especially in [4], [18], [9], [2], it has been shown how refinements and implementations of KAM theory may yield quantitative rigorous results that are in good agreement with the numerical expectations.

Keywords

Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold V.I., Proof of a, Theorem by A.N. Kolmogorov on the in variance of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surveys 18, 9 (1963).CrossRefGoogle Scholar
  2. [2]
    Celletti A., Analysis of resonances in the spin-orbit problem in Celestial Mechanics, Ph.D. Thesis, ETH Zürich (1989).Google Scholar
  3. [3]
    Celletti A., Chierchia L., Rigorous estimates for a computer-assisted KAM theory, J. Math. Phys. 28, 2078 (1987).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Celletti A., Chierchia L., Construction of analytic KAM surfaces and effective stability bounds, Commun. Math. Phys. 118, 119 (1988).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Celletti A., Falcolini C., Porzio A., Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum, Ann. Inst. Henri Poincare’ 47, 85 (1987).MathSciNetMATHGoogle Scholar
  6. [6]
    Celletti A., Giorgilli A., On the numerical optimization of KAM estimates by classical perturbation theory, J. Appl. Mathem. and Phys. (ZAMP) 39, 743 (1988).MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Chierchia L., Gallavotti G., Smooth prime integrals for quasi-integrable Hamiltonian systems, Nuovo Cimento 67 B, 277 (1982).MathSciNetGoogle Scholar
  8. [8]
    De la Llave R., private communication.Google Scholar
  9. [9]
    De La Llave R., Rana D., Proof of accurate bounds in small denominators problems, preprint (1986).Google Scholar
  10. [10]
    Escande D.F., Doveil F., Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems, J. Stat. Physics 26, 257 (1981).MathSciNetCrossRefGoogle Scholar
  11. [11]
    Greene J.M., A method for determining a stochastic transition, J. of Math. Phys. 20, 1183 (1979).CrossRefGoogle Scholar
  12. [12]
    Herman M., Sur le courbes invariantes par le diffeomorphismes de l’anneau, Asterisque 2, 144 (1986).MathSciNetGoogle Scholar
  13. [13]
    Herman M., Recent results and some open questions on Siegels linearization theorems of germs of complex analytic diffeomorphisms of C n near a fixed point, preprint (1987).Google Scholar
  14. [14]
    Kolmogorov A.N., On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian, Dokl. Akad. Nauk. SSR 98, 469 (1954).MathSciNetGoogle Scholar
  15. [15]
    Lanford III O.E., Computer assisted proofs in analysis, Physics A 124, 465 (1984).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Moser J., On invariant curves of area-preserving mappings of an annulus, Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1, 1 (1962).Google Scholar
  17. [17]
    Moser J., Minimal solutions of variational problems on a torus, Ann. Inst. Henri Poincare’ 3, 229 (1986).MATHGoogle Scholar
  18. [18]
    Ran A D., Proof of accurate upper and lower bounds to stability domains in small denominators problems, Ph.D. Thesis, Princeton (1987).Google Scholar
  19. [19]
    Russmann H., On the existence of invariant curves of twist mappings of an annulus, Springer Lecture Notes in Math. 1007, 677 (1983).MathSciNetCrossRefGoogle Scholar
  20. [20]
    Salamon D., Zehnder E., KAM theory in configuration space, Comment. Math. Helvetici 64, 84 (1989).MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Wayne C.E., The KAM theory of systems with short range interactions I, Comra. Math. Phys. 96, 311 (1984).MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    (no author listed), Vax Architecture handbook, Digital Equipment Corporation (1981).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Alessandra Celletti
    • 1
  • Luigi Chierchia
    • 2
  1. 1.Forschungsinstitut für MathematikETH-ZentrumZürichSwitzerland
  2. 2.Dipartimento di MatematicaII Universita’ di RomaRomaItalia

Personalised recommendations