Tools for Mathematical Computation

  • L. B. Rall
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 28)


Methodology for the validation of computation of values of functions using floatingpoint arithmetic is discussed and illustrated by an example.


Arithmetic Operation Interval Arithmetic Standard Function Computer Arithmetic Iterative Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, 1983.MATHGoogle Scholar
  2. [2]
    G. Bohlender, C. Ullrich, J. Wolff von Gudenberg, and L. B. Rall, Pascal-SC: A Computer Language for Scientific Computation, Academic Press, 1987.MATHGoogle Scholar
  3. [3]
    George F. Corliss and L. B. Rall, Adaptive, self-validating numerical quadrature, SIAM J. Scientific and Statistical Computing, 8 (1987), 831–847 ().MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    U. Kulisch (Ed.), Pascal-SC for the IBM PC, B. G. Teubner, 1987.Google Scholar
  5. [5]
    U. Kulisch (Ed.), Pascal-SC for the Atari ST, B. G. Teubner, 1987.Google Scholar
  6. [6]
    U. W. Kulisch and W. L. Miranker, Computer Arithmetic in Theory and Practice, Academic Press, 1981.MATHGoogle Scholar
  7. [7]
    U. W. Kulisch and W. L. Miranker (Eds.), A New Approach to Scientific Computation, Academic Press, 1983.MATHGoogle Scholar
  8. [8]
    U. W. Kulisch and W. L. Miranker, The arithmetic of the digital computer: A new approach, SIAM Review, 28, (1986), 1–40.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    R. E. Moore, Interval Analysis, Prentice-Hall, 1966.MATHGoogle Scholar
  10. [10]
    R. E. Moore, Methods and Applications of Interval Analysis, Society for Industrial and Applied Mathematics, 1979.MATHGoogle Scholar
  11. [11]
    R. E. Moore (Ed.), Reliability in Computing, Academic Press, 1988.MATHGoogle Scholar
  12. [12]
    L. B. Rall, Computational Solution of Nonlinear Operator Equations, Wiley, 1969.MATHGoogle Scholar
  13. [13]
    L. B. Rall, Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science No. 120, Springer, 1981.MATHGoogle Scholar
  14. [14]
    L. B. Rall, Mean value and Taylor forms in interval analysis, SIAM J. Math. Anal., 14 (1983) 223–238.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    L. B. Rall, The arithmetic of differentiation, Math. Mag., 59, (1986), 275–282.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    L. B. Rall, Pascal and Pascal-SC, in Encyclopedia of Physical Science and Technology, Vol. 10, pp. 183–209, Academic Press, 1987.Google Scholar
  17. [17]
    S. M. Rump, Solution of linear and nonlinear algebraic problems with sharp, guaranteed bounds, Computing, Suppl. 5 (1984), 147–168.Google Scholar
  18. [18]
    H. J. Stetter, Intervals revisited, Herrn Professor Dr. Karl Nickel zum 60. Geburtstag gewidmet, Vol. 2, pp. 519–538, University of Freiburg i. Br., 1984.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • L. B. Rall
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations