Advertisement

Morphological Processes in Shallow Tidal Seas

  • H. J. de Vriend
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 38)

Abstract

The formation and the elementary behaviour (e.g. propagation, growth and decay, dispersion) of linear sand banks in shallow tidal seas are analyzed. The principal tool is a linearized mathematical model of three-dimensional topographical changes of a sandy bottom in a tidal environment.

The resulting insight is used to explain this class of sand banks, in general, and the sand bank system off the coast of Holland, The Netherlands, in particular.

Keywords

Sediment Transport Residual Current Tidal Flow Bottom Shear Stress Sand Bank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnold, R. A., 1956: The flow of cohesionless grains in fluids. Phil. Trans. Royal Soc., A249, 235–297.Google Scholar
  2. Berkhoff, J. C. W., 1976: Mathematical models for simple harmonic linear water waves; wave diffraction and refraction. Doct. thesis, Delft Univ. of Techn., 103 pp.Google Scholar
  3. Boczar-Karakiewicz, and Bona, J. L., 1986: Wave-dominated shelves: a model of sand-ridge formation by progressive infragravity waves. In: Knight, R. J. and McLean, J. R. (eds.): “Shelf Sands and Sandstones.” Can. Soc. Petr. Geol. Memoir II, 163–179.Google Scholar
  4. Boczar-Karakiewicz, and Davidson-Arnot, R. G. D., 1987: Nearshore bar formation by non-linear wave processes — a comparison of model results and field data. Marine Geol 77, 287–304.CrossRefGoogle Scholar
  5. Caston, V. N. D., 1972: Linear sand banks in the southern North Sea. Sedimentology. 18, no. 1 & 2, 63–78.CrossRefGoogle Scholar
  6. Davies, A. M., 1988: On formulating two-dimensional vertically integrated hydrodynamic numerical models with an enhanced represenation of bed stress. J. Geoph. Res. 93, no. C2, 1241–1263.CrossRefGoogle Scholar
  7. Deigaard, R., 1983: Formation of large bed undulations under waves and currents — a stability analysis. Tech. Univ. Denmark, Inst. Hydrdyn. and Hydraulic Engrg., Prog. Rept., 59, 3–11.Google Scholar
  8. De Vriend, H. J., 1986: 2DH computation of transient sea bed evolutions. Proc. 20th ICCE, Taipei, Taiwan, 1689–1712.Google Scholar
  9. De Vriend, H. J., 1987a: 2DH mathematical modelling of morphological evolutions in shallow water, Coastal Engineering. 11, no. 1, 1–27.CrossRefGoogle Scholar
  10. De Vriend, H. J., 1987b: Analysis of 2DH morphological evolutions in shallow water. J. Geoph. Res., 92, no. C4, 3877–3893.CrossRefGoogle Scholar
  11. De Vriend, H. J., 1988: Inherent stability of depth-integrated mathematical models of coastal morphology. Proc. IAHR-Symp. “Math. Modelling of Sed. Transp. in the Coastal Zone,” Copenhagen, Denmark, 320–329.Google Scholar
  12. Galappatti, R. and Vreugdenhil, C. B., 1985: A depth-integrated model for suspended sediment transport. J. Hvdr. Res. 23, no. 4, 359–77.CrossRefGoogle Scholar
  13. Holman, R. A. and Bowen, A. J., 1982: Bars, bumps and holes: models of the generation of complex beach topography. J. Geoph. Res. 87, no. C1, 475–468.CrossRefGoogle Scholar
  14. Huthnance, J. M., 1982a: On one mechanism forming linear sand banks. Est., Coastal and Shelf Sci. 14, 79–99.CrossRefGoogle Scholar
  15. Huthnance, J. M., 1982b: On the formation of sand banks of finite extent. Est., Coastal and Shelf Sci. 15, 277–299.CrossRefGoogle Scholar
  16. Katopodi, I. and Ribberink, J. S., 1988: Quasi-3D modelling of suspended sediment transport by currents and waves. Delft Hydraulics, Rept. H460, 59 pp.Google Scholar
  17. LeBlond, P. H. and Mysak, L. A., 1977: Trapped coastal waves and their role in shelf dynamics. In: E. D. Goldberg et al., (eds.). “The Sea, Vol. 6: Marine Modelling,” Wiley-Interscience, New York, 459–495.Google Scholar
  18. Lepetit, J. P. and Hauguel, A., 1978: A numerical model of sediment transport. Proc. 16th ICCE, Hamburg, Fed. Rep. Germany, 1715–1724.Google Scholar
  19. Lin, P. N. and Shen, H. -W., 1984: Two-D flow with sediment by characteristics method. J. Hvdr. Engrg. 110, no. 5, 615–625.CrossRefGoogle Scholar
  20. Liu, P. L. -F., Kostense, J. K. and Dingemans, M. W., 1988: Long waves generated by short-wave groups over a step. Submitted for publ.Google Scholar
  21. Longuet-Higgens, M. S., 1953: Mass transport in water waves. Phil. Trans. Roval Soc., A 254, 535–581.CrossRefGoogle Scholar
  22. McAnally, W. H., Letter, J. V., Stewart, J. P., Thomas, W. A. and Brogdon, N. J., 1984: Application of Columbia hybrid modelling system. J. Hvdr. Engnr. 110, no. 5, 627–642.CrossRefGoogle Scholar
  23. McCave, I. N., 1979: Tidal currents at the North Hinder lightship, Southern North Sea: flow directions and turbulence in relation to maintenance of sand banks. Mar. Geol., 31, 101–114.CrossRefGoogle Scholar
  24. Mei, C. C., 1985: Resonant reflection of surface waves by periodic sand bars, J. Fluid Mech. 152, 35–335.Google Scholar
  25. Mynett, A., 1983: Wave refraction/shoaling analysis for the near-shore section of the S.E. Inde trunkline. Delft Hydr. Lab., Rept. R 1296 (limited distribution).Google Scholar
  26. Pattiaratchi, C. and Collins, M., 1987: Mechanisms for linear sandbank formation and maintenance in relation to dynamical oceanographical observations. Prog. Oceanog., 19, 117–176.CrossRefGoogle Scholar
  27. Ribberink, J. S. and De Vriend, H. J., 1988: Sediment transport formulations for waves and currents as developed for and applied in the Voordelta area of the Dutch coast. Delft Hydraulics, Rept. H526–2, 42 pp.Google Scholar
  28. Roelvink, J. A. and Stive, M. J. F., 1989: Initial sediment transport at the Holland coast. Delft Hydraulics, Rept. H825–IV, 23 pp. (in Dutch)Google Scholar
  29. Struiksma, N., Olesen, K. W., Flokstra, C. and De Vriend, H. J., 1985: Bed deformation in curved alluvial channels, J. Hydr. Res. 23, no. 1, 57–79.CrossRefGoogle Scholar
  30. Trowbridge, J. H., Kanetkar, C. N. and Wu, N. T., 1986: Numerical simulation of turbulent wave boundary layers. Proc. 20th ICCE, Taipei, Taiwan, 1623–1637.Google Scholar
  31. Van der Giessen, A., de Ruyter, W. P. M., and Borst, J. C., 1988: Three-dimensional current structure in the Netherlands coastal zone. Neth. J. Sea Res, (in press).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • H. J. de Vriend
    • 1
  1. 1.Delft HydraulicsEmmeloordThe Netherlands

Personalised recommendations