Advertisement

Monodromy Preserving Deformation of Linear Ordinary and Partial Differential Equations

  • Craig A. Tracy
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 25)

Abstract

A survey of the theory of monodromy preserving deformation of linear ordinary and partial differential equations and the associated nonlinear deformation equations is presented.

Keywords

Hyperbolic Plane Linear Ordinary Differential Equation Deformation Equation Fuchsian System Isomonodromic Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Flaschka and A. C. Newell, Monodromy-and spectrum-preserving deformations I., Commun. Math. Phys. 76 (1980), 65–116.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    R. Fucus, Über lineare homogene differentialgleichungen zweiter ordnung mit drei im endlichen gelegene wesentlich singulären stellen, Math. Annalen 63 (1907), 301–321.CrossRefGoogle Scholar
  3. [3]
    R. Garnier, Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critques fixes, Ann. Sci. Ecole Norm. Sup. (3) 29 (1912), 1–126.MathSciNetGoogle Scholar
  4. [4]
    S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, Orlando (1984).zbMATHGoogle Scholar
  5. [5]
    M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. Math. 107 (1978), 1–39.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    H. Kimura and K. Okamota, On the isomonodromic deformation of linear ordinary differ-ential equations of higher order, Funkcialaj Ekvacioj 26 (1983), 37–50.MathSciNetzbMATHGoogle Scholar
  7. [7]
    H. Kimura and K. Okamota, On the polynomial Hamiltonian structure of the Gamier systems, J. Math. pures et appl. 63 (1984), 129–146.zbMATHGoogle Scholar
  8. [8]
    M. Jimbo, T. Miwa, and M. Sato, Monodromy preserving deformation of linear differential equations and quantum field theory, Kakuyiigô Kenkya 40, suppl. no. 3 (1978), 45–58.Google Scholar
  9. [9]
    M. Jimbo, T. Miwa, and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and the r-function, Physica 2D (1981), 306–352.MathSciNetzbMATHGoogle Scholar
  10. [10]
    M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Physica 2D (1981), 407–448.MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Physica 4D (1981), 26–46.MathSciNetzbMATHGoogle Scholar
  12. [12]
    B. Malgrange, Sur les deformations isomonodromiques. I. Singularites regulieres, in Mathématique et Physique. Séminaire de l’Ecole Normale Supérieure 1979–1982, L. B. de Monvel, A. Douady, and J.-L. Verdier, eds. Birkhäuser, Boston (1983), 401–426.Google Scholar
  13. [13]
    T. Miwa, Painlevé property of monodromy preserving deformation equations and the analyticity of the r-functions, Publ. RIMS, Kyoto Univ. 17 (1981), 703–721.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J. Myers, Symmetry in scattering by a strip, unpublished, thesis Harvard University (1962).Google Scholar
  15. [15]
    J. Myers, Wave scattering and the geometry of a strip, J. Math. Phys. 6 (1965), 1839–1846.ADSCrossRefGoogle Scholar
  16. [16]
    J. Myers, Derivation of a matrix Painlevé equation germane to wave scattering by a broken corner, Physica 11D (1984), 51–89.MathSciNetzbMATHGoogle Scholar
  17. [17]
    K. Okamoto, On the τ-function of the Painlevé equations, Physica 11D (1984), 51–89.MathSciNetGoogle Scholar
  18. [18]
    K. Okamoto, Isomonodromic deformation and Painlevé equations, and the Gamier system, J. Fac. Sci. Univ. Tokyo 33 (1986), 575–618.zbMATHGoogle Scholar
  19. [19]
    J. Palmer and C. Tracy, Two-dimensional Ising correlations: The SMJ analysis, Adv. in Appl. Math. 4 (1983), 46–102.MathSciNetzbMATHGoogle Scholar
  20. [20]
    M. Sato, T. Miwa, and M. Jimbo, Holonomic quantum fields II, Publ. RIMS, Kyoto Univ. 15 (1979), 201–278.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    M. Sato, T. Miwa, and M. Jimbo, Holonomic quantum fields III, Publ. RIMS, Kyoto Univ. 15 (1979), 577–629.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    L. Schlesinger, Über eine klasse von differentialsystemen beliebiger ordnung mit festen kritischen punkten, J. Reine Angew. Math. 141 (1912), 96–145.zbMATHCrossRefGoogle Scholar
  23. [23]
    C. A. Tracy, Monodromy preserving deformation theory of the Klein-Gordon equation in the hyperbolic plane, Physica 34D (1989), 347–365.MathSciNetzbMATHGoogle Scholar
  24. [24]
    T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B13 (1976), 316–374.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Craig A. Tracy
    • 1
  1. 1.Department of Mathematics and Institute of Theoretical DynamicsUniversity of CaliforniaDavisUSA

Personalised recommendations