Skip to main content

Isospectral Flows: Their Hamiltonian Structures, Miura Maps and Master Symmetries

  • Conference paper
Solitons in Physics, Mathematics, and Nonlinear Optics

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 25))

Abstract

We consider a variety of spectral problems, polynomially dependent upon the spectral parameter. When the polynomial is of degree N, there are (generically) (N+1) locally defined, compatible Hamiltonian structures which have a universal form, involving some operator J k . The operators J k have a particular form for each specific spectral problem.

Examples include spectral dependent versions of the Schrödinger operator and its super-extensions and of generalised Zakharov—Shabat problems. Associated equations include the KdV, DWW, Ito, SIT and the Heisenberg FM equations.

A simple shift in the spectral parameter induces a transformation of the variables, corresponding to a particularly simple master symmetry. This gives a simple proof of compatibility of the Hamiltonian structures.

A remarkable sequence of Miura maps can be presented for many of these equations. The modified equations are also (multi-) Hamiltonian.

To be published in the proceedings of the IMA Workshop, “Applications of Solitons”, eds. P.J. Olver and D.H. Sattinger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, Berlin (1986).

    Google Scholar 

  2. M. Antonowicz and A.P. Fordy, Hamiltonian structure of nonlinear evolution equations, Published in: “Soliton Theory: A Survey of Results”, ed. A.P. Fordy, MUP, Manchester (1989), 273–312.

    Google Scholar 

  3. F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156–1162.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. B.A. Kupershmidt, Is a bi-Hamiltonian system necessarily integrable?, Phys. Letts. A, 123 (1987), 55–59.

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Antonowicz and A.P. Fordy, Coupled KdV equations with multi-Hamiltonian structures, Physica D28 (1987), 345–58.

    MathSciNet  ADS  Google Scholar 

  6. M. Antonowicz and A.P. Fordy, Coupled Harry Dym equations with multi-Hamiltonian structures, J. Phys. A. 21 (1988), L269–75.

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Antonowicz and A.P. Fordy, Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Commun. Math. Phys. 124 (1989), 465–486.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. B.A. Kupershmidt, Mathematics of dispersive water waves, Commun. Math. Phys. 99 (1985), 51–73.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. B.A. Kupershmidt, Elements of Superintegrable Systems, D. Reidel, Dordrecht (1987).

    Book  MATH  Google Scholar 

  10. M. Antonowicz and A.P. Fordy, Super-extensions of energy dependent Schrödinger operators, Commun. Math. Phys. 124 (1989), 487–500.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. F. Magri, C. Morosi and O. Ragnisco, Reduction techniques for infinite dimensional Hamiltonian systems: some ideas and applications, Commun. Math. Phys. 99 (1985), 115–40.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A.P. Fordy and D.D. Holm, A bi-Hamiltonian formulation of the self-induced transparency equations, In preparation.

    Google Scholar 

  13. A.P. Fordy, S. Wojciechowski and I.D. Marshall, A family of integrable quartic potentials related to symmetric spaces, Phys. Letts. A, 113 (1986), 395–400.

    Article  MathSciNet  ADS  Google Scholar 

  14. R.M. Miura, Korteweg-de Vries equation and generalizations I. A remarkable explicit non-linear transformation, J. Math. Phys. 9 (1968), 1202–1204.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A.P. Fordy and J. Gibbons, Factorization of operators I. Miura transformations, J. Math. Phys. 21 (1980), 2508–10.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. B.A. Kupershmidt and G. Wilson, Modifying Lax equations and the second Hamiltonian structure, Invent. Math. 62 (1981), 403–436.

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Adler, and J. Moser, On a class of polynomials connected with the KdV equation, Commun. Math. Phys. 61 (1978), 1–30. 121

    Article  MathSciNet  Google Scholar 

  18. A.P. Fordy and J. Gibbons, Factorization of operators II, J. Math. Phys. 22 (1981), 1170–5.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. Antonowicz, A.P. Fordy and Q.P. Liu, A tri-Hamiltonian extension of the Boussinesq hierarchy and its modifications, Preprint.

    Google Scholar 

  20. A.P. Fordy, Projective representations and deformations of integrable systems, Proc. R. Ir. Acad. 83A (1983), 75–93.

    MathSciNet  Google Scholar 

  21. L. Martinez Alonso, Schrödinger spectral problems with energy-dependent potentials as sources of nonlinear Hamiltonian evolution equations, J. Math. Phys. 21 (1980), 2342–9.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. B.G. Konopelchenko, The polynomial spectral problem of arbitrary order: A general form of the integrable equations and Bäcklund transformation, J. Phys. A. 14 (1981), 3125–41.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. G.-Z. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys. 30 (1989), 330–8.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A.G. Reyman and M.A. Semenov-Tian-Shansky, Compatible Poisson structures for Lax equations: an r-matrix approach, Phys. Letts. A 130 (1988), 456–60.

    Article  MathSciNet  ADS  Google Scholar 

  25. A.P. Fordy, A.G. Reyman and M.A. Semenov-Tian-Shansky, Classical r-matrices and compatible Poisson brackets for coupled KdV systems, Lett. Math. Phys. 17 (1989), 25–9.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. I. Dorfman, Dirac structures of integrable evolution equations, Phys. Letts. A 125 (1988), 240–6.

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Wilson, On the quasi-Hamiltonian formalism of the KdV equation, Phys. Letts. A 132 (1988), 445–50.

    Article  ADS  MATH  Google Scholar 

  28. M. Antonowicz and A.P. Fordy, Quasi-Hamiltonian structures and a generalisation of the Schwarzian derivative, Preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Fordy, A.P. (1990). Isospectral Flows: Their Hamiltonian Structures, Miura Maps and Master Symmetries. In: Olver, P.J., Sattinger, D.H. (eds) Solitons in Physics, Mathematics, and Nonlinear Optics. The IMA Volumes in Mathematics and Its Applications, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9033-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9033-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9035-0

  • Online ISBN: 978-1-4613-9033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics