Skip to main content

An Analytical Framework for Quantifying Muscular Action During Human Movement

  • Chapter
Multiple Muscle Systems

Abstract

A fundamental problem in human movement analyses is the quantification of individual, time- varying, muscle forces. Muscle forces not only play a major role in determining the stresses in bones and joints, but they also reflect the underlying neural control processes responsible for the observed movement patterns. Unfortunately, invasive techniques for measuring muscle forces are highly objectionable, whereas non-invasive techniques such as electromyography do not provide the quantitative accuracy needed to define muscle’s action on the skeleton. In addition, the human musculoskeletal system is mechanically redundant (i.e., the number of muscles spanning a joint exceeds the number of degrees of freedom defining joint motion) so that a direct solution of the muscle force-joint torque equations is not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleshinsky, S.Y. (1986). An energy “sources” and “fractions” approach to the mechanical energy expenditure problem. II. Movement of the multi-link chain model. J. Biomech. 19: 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Bobbert, M.F., and van Ingen Schenau, G. (1988). Coordination in vertical jumping. J. Biomech. 21: 249–262.

    Article  CAS  PubMed  Google Scholar 

  • Bobbert, M.F., Huijing, P.A., and van Ingen Schenau, G. (1986). An estimation of power output and work done by the human triceps surae muscle-tendon complex in jumping. J. Biomech. 19: 899–906.

    Article  CAS  PubMed  Google Scholar 

  • Chow, C.K., and Jacobson, D.H. (1971). Studies of human locomotion via optimal programming. Math. Biosci. 10: 239–306.

    Article  Google Scholar 

  • Crowninshield, R.D. (1978). Use of optimization tech¬niques to predict muscle forces. J. Biomech. Engng. 100: 88–92.

    Article  Google Scholar 

  • Davy, D.T., and Audu, M.L. (1987). A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomech. 20: 187–201.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, T.K., and Boykin, W.H. (1976). Analytic determination of an optimal human motion. J. Opt. Theory Appl. 19: 327–346.

    Article  Google Scholar 

  • Gregoire, L., Veeger, H.E., Huijing, P.A., and van Ingen Schenau, G. (1984). Role of mono- and Particular muscles in explosive movements. Int. J. Sports Med. 5: 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Hardt, D.E. (1978). Determining muscle forces in the leg during human walking: An application and evaluation of optimization methods. J. Biomech. Engng. 100: 72–78.

    Article  Google Scholar 

  • Hatze, H. (1987). Gait analysis:Adequacy of current models and research strategies. J. Motor Behavior 19: 280–287.

    CAS  Google Scholar 

  • Hatze, H. (1980). Neuromusculoskeletal control systems modeling — A critical survey of recent developments. IEEE Trans. Auto. Control AC-25: 375–385.

    Google Scholar 

  • Hatze, H. (1978). A general myocybemetic control model of skeletal muscle. Biol. Cybernetics 28: 143–157.

    Article  CAS  Google Scholar 

  • Hatze, H. (1976). The complete optimization of a human motion. Math. Biosci. 28: 90–99.

    Article  Google Scholar 

  • Komi, P. V., and Bosco, C. (1978). Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 10: 261–265.

    CAS  PubMed  Google Scholar 

  • Pandy, M.G., Zajac, F.E., Sim, E., and Levine, W.S. (1990). An optimal control model for maximum- height human jumping. J. Biomech. (in press).

    Google Scholar 

  • Pandy, M.G., and Zajac, F.E. (1990). Optimal muscular coordination strategies for jumping. J. Biomech. (in press).

    Google Scholar 

  • Pandy, M.G., and Zajac, F.E. (1989). Dependence of jumping performance on muscle strength, muscle- fiber speed, and tendon compliance. In Stein, J.L. et al. (eds.): Issues in the Modeling and Control of Biomechanical Systems, 1989 ASME Winter Annual Meeting in San Francisco. New York: The American Society of Mechanical Engineers.

    Google Scholar 

  • Sim, E. (1988). The application of optimal control theory for analysis of human jumping and pedaling. Ph.D. dissertation, Department of Electrical Engineering, University of Maryland, College Park.

    Google Scholar 

  • Zajac, F.E., and Gordon, M.E. (1989). Determining muscle’s force and action in multi-articular movement. Exer. Sport Sci. Revs. 17: 187–230.

    CAS  Google Scholar 

  • Zajac, F.E. (1989). Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. CRC Critical Rev. Biomed. Engng. 17: 359–411.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Pandy, M.G. (1990). An Analytical Framework for Quantifying Muscular Action During Human Movement. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_42

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics