Advertisement

The Unique Action of Bi-Articular Muscles in Leg Extensions

  • Gerrit Jan van Ingen Schenau
  • Maarten F. Bobbert
  • Arthur J. van Soest

Abstract

In textbooks on the anatomy of the musculo-skeletal system, both muscles crossing only one joint (mono-articular muscles) and muscles crossing more than one joint (multi-articular muscles) are classified according to the location of their line of action relative to joint axes of rotation (e.g. Williams and Warwick, 1980). For instance, the line of action of the mono-articular vastus medialis passes anterior to the flexion/extension axis of the knee joint, and therefore the muscle is classified as a knee extensor. Similarly, the bi-articular gastrocnemius is classified as a knee flexor and ankle plantar flexor. As such, the gastrocnemius is considered to be an antagonist of the vasti at the knee joint.

Keywords

Knee Extension Knee Extensor Plantar Flexion Joint Moment Vertical Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleshinsky, S.Y. (1986) An energy “sources” and “fractions” approach to the mechanical energy expenditure problem I-V. J. Biomechanics 19: 287– 315.Google Scholar
  2. Alexander, R.McN. (1989) Sequential joint extension in jumping. Human Movement Science 8: 339–345.CrossRefGoogle Scholar
  3. Andrews, J.G. (1987) The functional roles of the hamstrings and quadriceps during cycling. Lombard’s paradox revisited. J. Biomechanics 20: 565–575.CrossRefGoogle Scholar
  4. Baeyer, H. von (1921) Zur Frage der mehrgelenkigen Muskeln. Anat. Am. 54: 289–301.Google Scholar
  5. Bernstein, N.A. (1967) The Coordination and Regulation of Movements. London: Pergamon Press.Google Scholar
  6. Bobbert, M.F., Hoek, E., Ingen Schenau, G.J. van, Sargeant, A.J. and Schreurs, A.W. (1987) A model to demonstrate the power transporting role of biarticular muscles. Journal of Physiology 387: 24 P.Google Scholar
  7. Bobbert, M.F. and Ingen Schenau, G.J. van (1988) Coordination in vertical jumping. J. Biomechanics 21: 249–262.CrossRefGoogle Scholar
  8. Bogert, A.J. van den, Hartman, W., Schamhardt, H.C. and Sauren, A.A. (1989) In vivo relationship between force, EMG and length change in the deep digital flexor muscle in the horse. In: G. de Groot, A.P. Hollander, P.A. Huijing and G.J. van Ingen Schenau (eds.) Biomechanics XI-A, pp. 68–74. Free University Press, Amsterdam.Google Scholar
  9. Borelli, J. A. (1685) De motu animalium. Pars prima (cited by Fick, 1879 ).Google Scholar
  10. Burke, D., Hagbarth, K.E. and Lofstedt, L. (1978) Muscle spindle activity in man during shortening and lengthening contractions. Journal of Physiology 277: 131–142.PubMedGoogle Scholar
  11. Capozzo, A., Figura, F., Marchetti, M. and Pedotti, A. (1976) The interplay of muscular and external forces in human ambulation. J. Biomechanics 9: 35–43.CrossRefGoogle Scholar
  12. Cleland, J. (1867) On the actions of muscles passing over more than one joint Journ. Anat. Physiol. 1: 85–93.Google Scholar
  13. Descartes, R. (1662) De Homine, Leyden.Google Scholar
  14. Duchenne, G.B. (1867) Physiologie des Mouvements, Paris.Google Scholar
  15. Elftman, H. (1939a) Forces and energy changes in the leg during walking. American Journal of Physiology 125: 339–356.Google Scholar
  16. Elftman, H. (1939b) The function of muscles in locomotion. American Journal of Physiology 125: 357–366.Google Scholar
  17. Fenn, W.O. (1938) The mechanics of muscular contraction in man. J. Appl. Physics 9: 165–177.CrossRefGoogle Scholar
  18. Fick, A.E. (1879) Uber zweigelenkige Muskeln. Archiv. Anat. u. Entw. Gesch. 3: 201–239.Google Scholar
  19. Fischer, O. (1902) Kritik der gebrauchlichen Methoden die Wirkung eines Muskels zu bestimmen. Abhandlungen der math-phys. Classe der Koenigl. Sachs Gesellsch. d. Wissensch. 22: 483–590.Google Scholar
  20. Fujiwara, M. and Basmajian, J.V. (1975) Electromyographic study of two-joint muscles. American Journal of Physical Medicine 54: 234–241.PubMedGoogle Scholar
  21. Gregoire, L., Veeger, H.E. Huijing,P.A. and Ingen Schenau, G.J. van (1984) The role of mono- and bi- articular muscles in explosive movements. International Journal of Sports Medicine 5: 301–305.CrossRefPubMedGoogle Scholar
  22. Gregor, R.J., Cavanagh, P.R. and Lafortune, M. (1985) Knee flexor moments during propulsion in cycling - A creative solution to Lombard’s Paradox. J. Biomechanics 18: 307–316.CrossRefGoogle Scholar
  23. Hering, H.E. (1897) Über die Wirkung zweigelenkiger Muskeln auf drei Gelenke und über die pseudo- antagonistische Synergie. Archiv für die gesammte Physiologie 65: 627–637.CrossRefGoogle Scholar
  24. Hoffer, J.A., Sugano, N., Loeb, G.E., Marks, W.B., O’Donovan, M.J. and Pratt, C.A. (1987) Cat hindlimb motoneurons during locomotion II. Normal activity patterns. Journal of Neurophysiology 57: 530–553.PubMedGoogle Scholar
  25. Hoffer, J.A., Loeb, G.E., Sugano, N., Maries, W.B.. O’Donovan, M.J. and Pratt, C.A. (1987) Cat hindlimb motoneurons during locomotion III. Functional segregation in sartorius. Journal of Neurophysiology 57: 554–562.PubMedGoogle Scholar
  26. Hogan, N. (1985) The mechanics of multi-joint posture and movement control. Biological Cybernetics 52: 315–331.CrossRefPubMedGoogle Scholar
  27. Huter, C. (1863) Anatomische Studien an den Extremitätengelenken Neugeborenen und Erwachsener. Arch. f. Path. Anat. und Physiol, und klinische Medizin 28: 253–281.CrossRefGoogle Scholar
  28. Ingen Schenau, G.J. van, Groot, G. de and Boer, R.W. de (1985) The control of speed in elite female skaters. J. Biomechanics 18: 91–96.CrossRefGoogle Scholar
  29. Ingen Schenau, G.J. van, Bobbert, M.F. and Rozendal, R.H. (1987) The unique action of bi-articular muscles in complex movements. Journal of Anatomy 155: 1–5.Google Scholar
  30. Ingen Schenau. G.J. van (1989a) From rotation to translation: constraints on multi-joint movements and the unique action of bi-articular muscles. Human Movement Science 8: 301–337.CrossRefGoogle Scholar
  31. Ingen Schenau, G.J. van (1989b) From rotation to translation: Implications for theories of motor control. Human Movement Science 8: 423–442.CrossRefGoogle Scholar
  32. Ingen Schenau, G.J. van and Cavanagh, P.R. (1990) Power equations in endurance sports. J. Biomechanics (in press).Google Scholar
  33. Jacobs, R. (in preparation) Intermuscular coordination in sprint running.Google Scholar
  34. Jensen, J.L., Thelen, E. and Ulrich, B.D. (1989) Constraints on multi-joint movements: From the spontaneity of infancy to the skill of adults. Human Movement Science 8: 393–402.CrossRefGoogle Scholar
  35. Jöris, H.J.J., Edwards van Muyen, A.J., Ingen Schenau, G.J. van and Kemper, H.C.G. (1985) Force, velocity and energy flow during the overarm throw in female handball players. J. Biomechanics 18: 409–414.CrossRefGoogle Scholar
  36. Koning, J.J. de, Ingen Schenau, G.J. van and Groot, G. de (1989) The mechanics of the sprint start in Olympic speed skating. Int. J. Sports Biomechanics 5: 151–168.Google Scholar
  37. Kumamoto, M. (1984) Antagonistic inhibition exerted between bi-articular leg muscles during simultaneous hip and knee extension movement. In: M. Kumamoto (ed.) Neural and mechanical control of movement. Kyoto: Yamaguchi Schoten, pp. 114–122.Google Scholar
  38. Landsmeer, J.M.F. (1961) Studies in the anatomy of articulation. Acta Morphologica Neerl. Scand. 3: 304–321.Google Scholar
  39. Langer, C. (1879) Die Muskulatur der Extremitäten des Orang als Grundlage einer vergleichend- myologischen Untersuchung. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Math- Naturwissens. Classe. Bd. 79: 177–219.Google Scholar
  40. Loeb, G.E. (1981) Somatosensory unit input to the spinal cord during normal walking. Can. J. Physiol. Pharmacol. 59: 627–635.CrossRefPubMedGoogle Scholar
  41. Loeb, G.E. (1984) The control and responses of mammalian muscles spindles during normally executed motor tasks. In: R.L. Terjung (ed.) Exercise and Sport Sciences Reviews. Vol. 12, 157–204.Google Scholar
  42. Lombard, W.P. (1903) The action of two-joint muscles. Am. Phys. Educ. Rev. 9: 141–145.Google Scholar
  43. Markee, J.E., Logue, J.T., Williams, M. Stanton, W.B., Wrenn, R.N. and Walker, L.B. (1955) Two-joint muscles of the thigh. J. of Bone and Joint Surgery 37: 125–142.Google Scholar
  44. Molbech, S. (1966) On the paradoxical effect of some two-joint muscles. Acta Morphol. Neerl. Scand. 4: 171–178.Google Scholar
  45. Perret, C. and Cabelguen, J.M. (1980) Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bi- functional muscles. Brain Research 187: 333–352.CrossRefPubMedGoogle Scholar
  46. Robertson, D.E. and Winter, D.A. (1980) Mechanical energy generation, absorbtion and transfer amongst segments during walking. J. Biomechanics 13: 845–854.CrossRefGoogle Scholar
  47. Shampine, L.F. and Gordon, M.K. (1975) Computer Solution of Ordinary Differential Equations. The Initial Value Problem. W.H. Freeman & Co., San Francisco.Google Scholar
  48. Sherrington, C.S. (1909) Reciprocal innervation of antagonistic muscles. Fourteenth note. On double reciprocal innervation. Proc. R. Soc. London. Ser. B 91: 249–268.CrossRefGoogle Scholar
  49. Smith, A.M. (1981) The coactivation of antagonist muscles. Can. J. Physiol. Pharmacol. 59: 733–747.CrossRefPubMedGoogle Scholar
  50. Soest, A.J. van, Schermeiiiorn, P., Huijing, P.A. and Ingen Schenau, G.J. van (1989) Influence of timing on vertical jumping performance: a simulation study. In: R.J. Gregor, R.F. Zernicke and W.C. Whiting (eds) Proceedings Biomechanics XII. University of California, Los Angeles, p. 244.Google Scholar
  51. Spector, S.A., Gardiner, P.F., Zernicke, R.F., Rog, R.R. and Edgerton, V.R. (1980) Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. Journal of Neurophysiology 44: 951–960.PubMedGoogle Scholar
  52. Suzuki, S., Watanabe, S. and Saburo, H. (1982) EMG activity and kinematics of human cycling movements at different constant velocities. Brain Research 240: 245–258.CrossRefPubMedGoogle Scholar
  53. Taub, E. and Berman, A.J. (1968) Movement and learning in the absence of sensory feedback. In: J.S. Feedman (ed.) The Neurophysiology of Spatially Oriented Behavior. Dorsey Press, Homewood, I11., 173–192.Google Scholar
  54. Thomas, D.O., Sagar, G., White, M.J. and Davies, C.T.M. (1988) Electrically evoked isometric and isokinetic properties of the triceps surae in young male subjects. European Journal of Applied Physiology 58: 321–326.CrossRefGoogle Scholar
  55. Tilney, F. and Pike, F.H. (1925) Muscular coordination experimentally studied in its relation to the cerebellum. Archives of Neurology and Psychiatry 13: 289–334.Google Scholar
  56. Vos, E.J., Mullender,M.G. and Ingen Schenau, G.J. van (1990) Electro-mechanical delay in vastus lateralis muscle during dynamic isometric contractions. Eur. J. Appl. Physiol, (in press).Google Scholar
  57. Walmsley, B., Hodgson, J.A. and Burke, R.E. (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. Journal of Neurophysiology 41: 1203–1216.PubMedGoogle Scholar
  58. Wells, R. and Evans, N. (1987) Functions and recruitment patterns of one- and two-joint muscles under isometric and walking conditions. Human Movement Science 6: 349–372.CrossRefGoogle Scholar
  59. Wells, R.P. (1988) Mechanical energy costs of human movement: An approach to evaluating the transfer possibilities of two-joint muscles. J. Biomechanics 21: 955–964.CrossRefGoogle Scholar
  60. Werff, K. van der (1977) Kinematic and dynamic analysis of mechanisms, a finite element approach. Thesis, Delft University, Delft. Williams, P.L. and Warwick, R. ( 1980 ) Gray’s Anatomy Churchill Livingstone, London.Google Scholar
  61. Williams, P.L. and Warwick, R. (1980) Gray’s Anatomy Churchill Livingstone, London.Google Scholar
  62. Winter, D.A. (1984) Kinematic and kinetic patterns in human gait: variability and compensating effects. Human Movement Science 3: 51–76.CrossRefGoogle Scholar
  63. Yamashita, N. (1988) EMG-activities in mono- and bi- articular thigh muscles in combined hip and knee extension. Eur. J. Appl. Physiol. 58: 274–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, New York 1990

Authors and Affiliations

  • Gerrit Jan van Ingen Schenau
  • Maarten F. Bobbert
  • Arthur J. van Soest

There are no affiliations available

Personalised recommendations