Skip to main content

Computations of Granular Flow in a Hopper

  • Conference paper
Two Phase Flows and Waves

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 26))

Abstract

The flow of granular material in a hopper is a common industrial problem, but it is a problem without a good solution. Classical theories treat the material as an incompressible continuum in steady plastic yield; such theories cannot explain experimentally observed dynamics and dilantcy. Investigation of dynamic theories which include density variation is just beginning. We review the classical theory of granular flow in bins and present some of the recent developments on compressible flows. We borrow ideas from computational fluid dynamics in order to develop a method for the numerical simulation of compressible hopper flow.

This research is supported by the Air Force Office of Scientific Research under grant AFSOR 88-0182, and the NSF and ONR through grants to the Institute for Mathematics and its Applications and the Minnesota Supercomputer Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Beam and R. F. Warming, An Implicit Factored Scheme for the Compressible Navier-Stokes Equations, AIAA Jour., 16 (1978), pp. 393–402.

    Article  MATH  Google Scholar 

  2. R. Behringer, these proceedings.

    Google Scholar 

  3. C. Brennan and J. C. Pearce, Granular Material Flow in Two Dimensional Hoppers, J. Appl. Mech., 45 (1978), pp. 43–50.

    Article  Google Scholar 

  4. A. Drescher, An Experimental Investigation of Flow Rules for Granular Materials using Optically Sensitive Glass Particles, Geotech., 26 (1976), pp. 591–601.

    Article  Google Scholar 

  5. R. Jackson, Some Mathematical and Physical Aspects of Continuum Models for the Motion of Granular Materials, in The Theory of Dispersed Multiphase Flow, R. Meyer (ed.), Academic Press (1983).

    Google Scholar 

  6. A. W. Jenike, Steady Gravity Flow of Frictional-Cohesive Solids in Converging Channels, J. Appl. Mech., 31 (1964), pp. 5–11.

    Article  Google Scholar 

  7. J. T. Jenkins and M. W. Richman, Grad’s 13 Moment System for a Dense Gas of Inelastic Spheres, Arch. Rat’l Mech. Anal., 87 (1985), pp. 355–377.

    MATH  MathSciNet  Google Scholar 

  8. J. T. Jenkins and S. B. Savage, A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic Spherical Particles, J. F. M., 130 (1983), pp. 187–202.

    Article  MATH  Google Scholar 

  9. P. C. Johnson and R. Jackson, Frictional-Collisional Constitutive Relations for Granular Materials, J. F. M., 176 (1987), pp. 67–93.

    Article  Google Scholar 

  10. K. R. Kaza and R. Jackson, The Rate of Discharge of Coarse Granular Material from a Wedge Shaped Hopper, Powder Tech., 33 (1982), pp. 223–242.

    Article  Google Scholar 

  11. R. Mlchalowskl, Flow of a Granular Material through a Plane Hopper, Powder Tech., 39 (1984), pp. 29–40.

    Article  Google Scholar 

  12. Z. Mroz and C. Szymanski, Gravity Flow of a Granular Material in a Converging Channel, Arch. Mech. Stos., 23 (1971), pp. 897–917.

    MATH  Google Scholar 

  13. E. B. Pitman, The Stability of Granular Flow in Converging Hoppers, SIAM J. Appl. Math., 48 (1988), pp 1033–1053.

    MATH  MathSciNet  Google Scholar 

  14. E. B. Pitman and D. G. Schaeffer, Stability of Time Dependent Compressible Granular Flow in Two Dimensions, Comm. Pure Appl. Math., 40 (1987), pp. 421–447.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. B. Pitman, D. G. Schaeffer and M. Shearer, Stability in Three Dimensional Critical State Theories of Plasticity, in preparation.

    Google Scholar 

  16. J. R. Prakash and K. K. Rao, Steady Compressible Flow of Granular Material through a Wedge Shaped Hopper: The Smooth Wall Radial Gravity Problem, Chem. Eng. Sci., 43 (1988), pp. 479–494.

    Article  Google Scholar 

  17. K. H. Roscoe, A. N. Schofield and C. P. Wroth, On the Yielding of Soils, Geotech., 8 (1958), pp. 22–53.

    Article  Google Scholar 

  18. S. B. Savage, Mass Flow of Granular Material from Coupled Velocity-Stress Fields, Brit. J. Appl. Phys., 16 (1965), pp. 1885–1888.

    Article  Google Scholar 

  19. D. G. Schaeffer and E. B. Pitman, III Posedness in Three Dimensional Plastic Flow, Comm. Pure Appl. Math., 41 (1988), pp. 879–890.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. G. Schaeffer, M. Shearer and E. B. Pitman, Instability in Critical State Theories of Granular Flow, to appear, SIAM J. Appl. Math.

    Google Scholar 

  21. M. Shearer and D. G. Schaeffer, Foundations of the Quasi-dynamic Approximation in Critical State Plasticity, preprint.

    Google Scholar 

  22. H. C. Yee, Linearized Form of Implicit TVD Schemes for the Multidimensional Euler and Navier-Stokes Equations, Comp. Math. Appl., 12 (1986), pp. 413–432.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. C. Yee and A. Harten, Implicit TVD Schemes for Hyperbolic Conservation Laws in Curvilinear Coordinates, AIAA Jour., 25 (1987), pp. 266–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Pitman, E.B. (1990). Computations of Granular Flow in a Hopper. In: Joseph, D.D., Schaeffer, D.G. (eds) Two Phase Flows and Waves. The IMA Volumes in Mathematics and Its Applications, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9022-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9022-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9024-4

  • Online ISBN: 978-1-4613-9022-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics