Skip to main content

Electrostatic Properties of Minerals from X-Ray Diffraction Data: A Guide for Accurate Atomistic Models

  • Chapter
Diffusion, Atomic Ordering, and Mass Transport

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 8))

Abstract

One of the ultimate goals of theoretical mineralogy is the computation of diffusion properties of crystalline solids from first principles. Such calculations require models that yield accurate energetics for the generation and migration of point defects, preferably as a function of temperature (Lasaga, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austerman, S.B. (1964) Self-diffusion in beryllium oxide. J. NucL Mater., 14, 248–257.

    Article  Google Scholar 

  • Azaroff, L.V. (1961) Role of crystal structure in diffusion. I. Diffusion in closest-packed crystals. J. Appi. Phys., 32, 1658–1662.

    Article  Google Scholar 

  • Bader, R.F.W. (1981) The nature of chemical binding, in The Force Concept in Chemistry, edited by B.M. Deb, pp. 39 - 136. Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Bader, R.F.W. (1985) Atoms in molecules. Accounts of Chem. Res., 18, 9–15.

    Article  Google Scholar 

  • Bader, R.F.W. (1988) From Schròdinger to atoms in molecules. Pure Appi Chem, 60, 145–155.

    Article  Google Scholar 

  • Bader, R.F.W. and Essén, H. (1984) The characterization of atomic interactions. J. Chem. Phys., 80, 1943–1960.

    Article  Google Scholar 

  • Bader, R.F.W., and MacDougall, P.J. (1985) Toward a theory of chemical reactivity based on the charge density. J. Amer. Chem. Soc., 107, 6788–6795.

    Article  Google Scholar 

  • Bader, R.F.W., and Nguyen-Dang, T.T. (1981) Quantum theory of atoms in molecules—Dalton revisited. Adv. Quantum Chem., 14, 63–124.

    Article  Google Scholar 

  • Bader, R.F.W., MacDougall, P.J., and Lau, C.D.H. (1984) Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity. J. Amer. Chem. Soc., 106, 1594–1605.

    Article  Google Scholar 

  • Becker, P. J., and Coppens, P. (1974) Extinction within the limit of validity of the Darwin transfer equations. II. Refinement of extinction in spherical crystals of SrF2 and LiF. Acta Crystall, A30, 148–153.

    Google Scholar 

  • Blessing, R.H. (1987) Data reduction and error analysis for accurate single crystal diffraction intensities. Crystall. Rev., 1, 3–58.

    Article  Google Scholar 

  • Blessing, R.H., Coppens, P., and Becker P. (1974) Computer analysis of step-scanned X-ray data. J. Appl. Crystall, 7, 488–492.

    Article  Google Scholar 

  • Burnham, C.W. (1985) Mineral structure energetics and modeling using the ionic approach, in Microscopic to Macroscopic: Atomic Environments to Mineral Thermodynamics, edited by S.W. Kieffer and A. Navrotsky, Rev. Mineral., 14, 347–88.

    Google Scholar 

  • Chang, K.J., and Cohen, M.L. (1984) Theoretical study of BeO: Structural and electronic properties. Solid State Commun, 50, 487–491.

    Article  Google Scholar 

  • Clementi, E., and Roetti, C. (1974) Roothaan-Hartree-Fock wave functions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z54. Atomic Data and Nuclear Data Tables, 14, 177–478.

    Article  Google Scholar 

  • De Bruin, H.J., and Watson, G.M. (1964) Self-diffusion of beryllium in unirradiated beryllium oxide. J. Nucl. Mater., 14, 239 - 247.

    Article  Google Scholar 

  • DeTitta, G.T. (1984) ABSORB: An absorption correction program for crystals enclosed in capilliaries with trapped mother liquor. J. Appl. Crystall., 18, 75–79.

    Article  Google Scholar 

  • Downs, J.W. (1983) An experimental examination of the electron distributions in bromel- lite, BeO, and phenacite, Be2Si04. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  • Downs, J.W., Ross, F.K., and Gibbs, G.V. (1985) The effects of extinction on the refined structural parameters of crystalline BeO: A neutron and gamma-ray diffraction study. Acta Crystall, B41, 425–431.

    Article  Google Scholar 

  • Downs, J.W., Hill, R.J., Newton, M.D., Tossell, J.A., and Gibbs, G.V. (1982) Theoretical and experimental charge distributions in euclase and stishovite, in Electron Distributions and the Chemical Bond, edited by P. Coppens and M.B. Hall, pp. 173–189. Plenum Press, New York.

    Chapter  Google Scholar 

  • Ellis, D.E. (1987) Vacancy and defect structures in metal oxides. Phys. Chem. Minerals, 14, 303 - 307.

    Article  Google Scholar 

  • Finger, L.W., and Gibbs, G.V. (1985) A derivation of bonded radii from theoretical molecular charge distributions (Abstract). Eos Trans., American Geophysical Union, 66 (18), 356–357.

    Google Scholar 

  • Gibbs, G.V. (1982) Molecules and models for bonding in silicates. Amer. Mineral, 67, 421–450.

    Google Scholar 

  • Gordon, R.G., and Kim, Y.S. (1972) Theory for the forces between closed-shell atoms and molecules. J. Chem. Phys., 56, 3122–3133.

    Article  Google Scholar 

  • Hohenberg, P., and Kohn, W. (1964) Inhomogeneous electron gas. Phys. Rev., 136 (3B), 864–871.

    Article  Google Scholar 

  • Jephcoat, A.P., Hemley, R.J., Mao, H.K., Cohen, R.E., and Mehl, M.J. (1988) Raman spectroscopy and theoretical modeling of BeO at high pressure. Phys. Rev. B, 37, 4727–4734.

    Article  Google Scholar 

  • Lasaga, A.C. (1981) The atomistic basis of kinetics: Defects in minerals, in Kinetics of Geochemical Processes, edited by A.C. Lasaga and R.J. Kirkpatrick, Rev. Mineral, 8, 261–319.

    Google Scholar 

  • Lasaga, A.C., and Gibbs, G.V. (1987) Applications of quantum mechanical potential surfaces to mineral physics calculations. Phys. Chem. Minerals, 14, 107–117.

    Article  Google Scholar 

  • Lehmann, M.S., and Larsen, F.K. (1974) A method for location of the peaks in step-scan- measured Bragg reflexions. Acta Crystall, A30, 580–584.

    Article  Google Scholar 

  • Mehl, M.J., Cohen, R.E., and Krakauer, H. (1988) Linearized augmented plane wave electronic structure calculations for MgO an CaO. J. Geophys. Res., 93, 8009–8022.

    Article  Google Scholar 

  • Morse, P.M., and Feshbach, H. (1953) Methods of Theoretical Physics, Part I., p. 8. McGraw-Hill, New York.

    Google Scholar 

  • Parr, R.G., and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York.

    Google Scholar 

  • Pauling, L. (1928) The sizes of ions and their influence on the properties of salt-like compounds. Zeit. Kristall, 67, 377–404.

    Google Scholar 

  • Politzer, P., and Daiker, C. (1981) Models for chemical reactivity, in The Force Concept in Chemistry, edited by B.M. Deb, pp. 294 - 387. Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Politzer, P., and Truhlar, D.G. (1981) Introduction: The role of the electrostatic potential in chemistry, in Chemical Applications of Atomic and Molecular Electrostatic Potentials, edited by P. Politzer and D.G. Truhlar, pp. 1 - 6. Plenum Press, New York.

    Google Scholar 

  • Price, G.D., and Parker, C. (1984) Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2Si04. Phys. Chem. Minerals, 10, 209–216.

    Article  Google Scholar 

  • Sagar, R.P., Ku, A.C.T., Smith, V.H., and Simas, A.M. (1988) The Laplacian of the charge density and its relationship to the shell structure of atoms and ions. J. Chem. Phys., 88, 4367–4374.

    Article  Google Scholar 

  • Shannon, R.D., and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystall, B25, 925–946.

    Article  Google Scholar 

  • Shavitt, I. (1983) The treatment of electron correlation: Where do we go from here? in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, edited by C. Dykstra, pp. 185–196. Riedel, Dordrecht.

    Google Scholar 

  • Slater, J.C. (1965) Quantum Theory of Molecules and Solids, vol. 2. McGraw-Hill, New York.

    Google Scholar 

  • Spackman, M.A., and Weber, H.P. (1988) Electrostatic potential in dehydrated sodium zeolite A from low-resolution X-ray diffraction data. J. Phys. Chem., 92, 794–796.

    Article  Google Scholar 

  • Stewart, R.F. (1976) Electron population analysis with rigid pseudoatoms. Acta Crystall, A32, 565–574.

    Article  Google Scholar 

  • Stewart, R.F. (1979) On the mapping of electrostatic properties from Bragg diffraction data. Chem. Phys. Lett., 65, 335–342.

    Article  Google Scholar 

  • Stewart, R.F. (1982) Mapping electrostatic potentials from diffraction data. Godisnjak Jugoslavenskog Centra za Kritalografiju, 17, 1–24.

    Google Scholar 

  • Stewart, R.F., and Spackman, M.A. (1983) VALRAY Users Manual, Department of Chemistry, Carnegie-Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Suortti, P. (1983) Extinction correction and synchrotron radiation. Proc. Indian Acad. Sci. (Chem. Sci.), 92, 359–377.

    Google Scholar 

  • Vidal-Valat, G., Vidal, J.P., Kurki-Suonio, K., and Kurki-Suonio, R. (1987) Multipole analysis of X-ray diffraction data on BeO. Acta Crystall, A43, 540–550.

    Article  Google Scholar 

  • Wolf, G.H., and Bukowinski, M.S.T. (1988) Variational stabilization of ionic charge densities in the electron-gas theory of crystals: Applications to MgO and CaO. Phys. Chem. Minerals, 15, 209–220.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Downs, J.W. (1991). Electrostatic Properties of Minerals from X-Ray Diffraction Data: A Guide for Accurate Atomistic Models. In: Ganguly, J. (eds) Diffusion, Atomic Ordering, and Mass Transport. Advances in Physical Geochemistry, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9019-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9019-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9021-3

  • Online ISBN: 978-1-4613-9019-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics