Skip to main content

Thermal Diffusion in Petrology

  • Chapter

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 8))

Abstract

Most processes in geology are a consequence at some level of the flow of energy or mass. Heat conduction and chemical diffusion are examples of two of these sorts of flows which are driven by imbalances of temperature and chemical potential, respectively. Geological occurrences of these processes arise from physical situations where substances of different temperature or chemical potential are juxtaposed and a flux results to dissipate the causal imbalance. In the general case these flows may be coupled so that, for instance, a temperature gradient may result in a flow of mass as well as heat. This effect in liquids was demonstrated by Soret (1879) and bears his name. In gases or solids the phenomenon is given the general name thermal diffusion. These couplings are second-order phenomena and their recognition in geological situations has been controversial. It is the purpose of this chapter to present evidence on the magnitude and character of the effect in magmatic systems, to present a microscopic and macroscopic rationale for the effect, and to discuss the possible applications to petrology. We conclude that thermal diffusion is not an important agent of petrogenesis but that its study is very informative about the physical chemistry of magmatic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacon, C.R., MacDonald, R., Smith, R.L., and Baedecker, P.A. (1981) Pleistocene high-silica rhyolite of the Coso Volcanic Field, Inyo County, California. J. Geophys. Res. 86, 10223–10241.

    Article  Google Scholar 

  • Barron, L.M. (1981) The calculated geometry of silicate liquid immiscibility. Geochim. Cosmochim. Acta 45, 495–512.

    Article  Google Scholar 

  • Becker, G.F. (1897) Some queries on rock differentiation. Amer. J. Sci. (4) 3, 21–41.

    Article  Google Scholar 

  • Berman, R.G., and Brown, T.H. (1987) Development of models for multicomponent melts: Analysis of synthetic systems, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, edited by I.S.E. Carmichael and H.P. Eugster, pp. 405–442. Reviews in Mineralogy, Vol. 17. Mineralogical Society of America, Washington, DC.

    Google Scholar 

  • Bockris, J.O’M., Mackenzie, J.D., and Kitchener, J. (1955) Viscous flow in silica and binary liquid silicates. Trans. Faraday Soc. 51, 1734–1748.

    Article  Google Scholar 

  • Bottinga, Y., and Weill, D.F. (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Amer. J. Sci. 269, 169–182.

    Article  Google Scholar 

  • Bowen, N.L. (1921) Diffusion in silicate melts. J. Geol. 29, 295–317.

    Article  Google Scholar 

  • Bowen, N.L. (1928) The Evolution of the Igneous Rocks. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Bowen, N.L., and Schairer, J.F. (1932) The system FeO–Si02. Amer. J. Sci. 5, 177–213.

    Article  Google Scholar 

  • Brögger, W.C. (1890) Die mineralien der syenitpegmatitgánge der siidnorwegischen angit—and nephelinsyenite. Z. Krystallogr. Mineral. 16, 80–90.

    Google Scholar 

  • Cameron, K.L. (1984) Bishop Tuff revisited: New rare earth element data consistent with crystal fractionation. Science 224, 1338–1340.

    Article  Google Scholar 

  • Carrigan, C.R., and Cygan, R.T. (1986) Implications of magma chamber dynamics for Soret-related fractionation. J. Geophys. Res. 91, 11451–11461.

    Article  Google Scholar 

  • Chen, C.F., and Turner, J.S. (1980) Crystallization in a double-diffusive convective system. J. Geophys. Res. 85, 2573–2593.

    Article  Google Scholar 

  • Clusius, K., and Dickel, G. (1938) Neues verfahren zur Gasentmischung und Isotopen- trennung. Naturmssenschaften, 26, 546.

    Article  Google Scholar 

  • DeGroot, S.R., and Mazur, P. (1962) Non-Equilibrium Thermodynamics. North-Holland, Amsterdam, 510 pp.

    Google Scholar 

  • DeJong, B.H.W.S., and Brown, G.E. (1980) The polymerization of silicate and aluminate tetrahedra: in glasses, melts and aqueous solutions. II. The network modifying effects of Mg, K, Na, Li, H, OH, F, CI, H20, CO2, and H3O on silicate polymers. Geochim. Cosmochim. Acta 44, 1627–1642.

    Article  Google Scholar 

  • Denbigh, K.G. (1951) The Thermodynamics of the Steady–State. Methuen, London, 103 pp.

    Google Scholar 

  • Denbigh, K.G. (1952) The heat of transfer in binary regular solutions. Trans. Faraday Soc. 48, 1–8.

    Article  Google Scholar 

  • Dougherty, E.L., and Drickamer, H.G. (1955) A theory of thermal diffusion in liquids. J. Chem. Phys. 23, 295–308.

    Article  Google Scholar 

  • Fei, Y., Saxena, S.K., and Eriksson, G. (1986) Some binary and ternary silicate solution models. Contrib. Mineral. Petrol. 94, 221–229.

    Article  Google Scholar 

  • Ghiorso, M.S. (1987) Chemical mass transfer in magmatic processes, III. Crystal growth, chemical diffusion and thermal diffusion in multicomponent silicate melts. Contrib. Mineral. Petrol. 96, 291–313.

    Article  Google Scholar 

  • Ghiorso, M.S., Carmichael, I.S.E., Rivers, M.L., and Sack, R.O. (1983) The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib. Mineral Petrol. 84, 107– 145.

    Google Scholar 

  • Glasstone, S., Laidler, K.J., and Eyring, H. (1941) The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw-Hill, New York, 611 pp.

    Google Scholar 

  • Grew, K.E., and Ibbs, T.L. (1952) Thermal Diffusion in Gases. Cambridge University Press, Cambridge.

    Google Scholar 

  • Haller, W., Blackburn, D.H., and Simmons, J.H. (1974) Miscibility gaps in alkali- silicate binaries—data and thermodynamic interpretation. J. Amer. Ceram. Soc. 57, 120–126.

    Article  Google Scholar 

  • Harker, A. (1909) The Natural History of Igenous Rocks. Macmillian, New York, 316 pp.

    Google Scholar 

  • Hess, P.C. (1980) Polymerization model for silicate melts, in Physics of Magmatic Processes, edited by R.B. Hargraves, pp. 3–48. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Hess, P.C. (1989) The Role of High Field Strength Cations in Silicate Melts. Advances in Physical Geochemistry. Springer-Verlag, New York (in press).

    Google Scholar 

  • Hess, P.C., and Wood, M.I. (1982) Aluminum coordination in metaluminous and per- alkaline silicate melts. Contrib. Mineral. Petrol. 81, 103–112.

    Article  Google Scholar 

  • Hiby, V.K., and Wirtz, J.W. (1943) Kinetische theorie der thermodiffusion in flüssigkeiten. Phys. Z. 44, 369–382.

    Google Scholar 

  • Hildreth, W. (1979) The Bishop Tuff: Evidence for the Origin of Compositional Zonation in Silicic Magma Chambers, pp. 43–75. Special Paper No. 180. Geological Society of America, Boulder, Colorado.

    Google Scholar 

  • Hildreth, W. (1981) Gradients in silicic magma chambers: Implications for lithospheric magmatism. J. Geophys. Res. 86, 10153–10192.

    Article  Google Scholar 

  • Hofmann, A.W. (1980) Diffusion in natural silicate melts: A critical review, in Physics of Magmatic Processes, edited by R.B. Hargraves, pp. 385–418. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Jones, A.L., and Milberger, E.C. (1953) Separation of organic liquid mixtures by thermal diffusion. Ind. Eng. Chem. 45, 2689–2696.

    Article  Google Scholar 

  • Lagorio, A. (1887) Ueber die natur der glasbasis, sowie der krystallisationsvorgänge im eruptiven magma. (Tschermaks) Mineral. Petrogr. Mitt. VIII, 421–530.

    Google Scholar 

  • Lesher, C.E. (1985) Thermal diffusion in silicate liquids. Ph.D. Thesis, Harvard University, 189 pp.

    Google Scholar 

  • Lesher, C.E. (1986) Effects of silicate liquid composition on mineral-liquid element partitioning from Soret diffusion studies. J. Geophy. Res. 91, 6123–6141.

    Article  Google Scholar 

  • Lesher, C.E., and Walker, D. (1986a) Solution properties of silicate liquids from thermal diffusion experiments. Geochim. Cosmochim. Acta 50, 1397–1411.

    Article  Google Scholar 

  • Lesher, C.E., and Walker, D. (1986b) Chemical diffusivities of natural silicate liquids from thermal (Soret) diffusion studies. EOS Trans. Amer. Geophys. Union 67, 409.

    Google Scholar 

  • Lesher, C.E., and Walker, D. (1988) Cumulate maturation and melt migration in a temperature gradient. J. Geophy. Res. 93, 10295–10311.

    Article  Google Scholar 

  • Lodding, A., and Ott, A. (1966) Isotope thermotransport in liquid potassium, rubidium and gallium. Z. Naturforsch. 21a, 1344–1347.

    Google Scholar 

  • Ludington, S. (1981) The Redskin Granite: Evidence for thermogravitational diffusion in a Precambrian granite batholith. J. Geophys. Res. 86, 10423–10430.

    Article  Google Scholar 

  • Mahood, G.A. (1981) Chemical evolution of a Pleistocene rhyolite center: Sierra La Primavera, Jalisco, Mexico. Contrib. Mineral. Petrol. 77, 11–30.

    Article  Google Scholar 

  • Mahood, G.A., and Hildreth, W. (1983) Large partition coefficients for trace elements in high silica rhyolites. Geochim. Cosmochim. Acta 47, 11–30.

    Article  Google Scholar 

  • McBirney, A.R., and Noyes, R.M. (1979) Crystallization and layering of the Skaergaard instrusion. J. Petrol. 20, 487–554.

    Google Scholar 

  • Michael, P.J. (i983) Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes. Geology 11, 31–34.

    Google Scholar 

  • Mittlefehldt, D.W., and Miller, C.F. (1983) Geochemistry of the Sweetwater Wash Pluton, California: Implications for “anomalous” trace element behavior during differentiation of felsic magmas. Geochim. Cosmochim. Acta 47, 109–124.

    Article  Google Scholar 

  • Mysen, B.O., Virgo, D. and Seifert, F.A. (1982) The structure of silicate melts: implications for chemical and physical properties of natural magmas. Rev. Geophys. Space Phys. 20, 353–383.

    Article  Google Scholar 

  • Nash, W.P., and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Acta 49, 2309–2322.

    Article  Google Scholar 

  • Navrotsky, A., Hon. R., Weill, D.F., and Henry, D.J. (1980) Thermochemistry of glasses and liquids in the systems CaMgSi2O6-CaAl2Si2O8-NaAlSi3 O8, SiO2-CaAl2Si2O8- NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O. Geochim. Cosmochim. Acta 44, 1409–1423.

    Article  Google Scholar 

  • Powell, M.A., Walker, D., Grove, T.L., and Hays, J.F. (1980) Cation diffusion in basaltic melts: Measurements from crystal-liquid boundary layers in controlled cooling experiments. Geol. Soc. Amer. Abstr. Program. 12, p. 502.

    Google Scholar 

  • Rice, A.R. (1981) Convective fractionation: A mechanism to provide cryptic zoning (macrosegregation), layering, crescumulates, banded tuffs and explosive volcanism in igneous processes. J. Geophys. Res. 86, 405–417.

    Article  Google Scholar 

  • Roedder, E. (1951) Low temperature liquid immiscibility in the system K20-FeO- Al2O3-SiO2. Amer. Mineral. 36, 282–286.

    Google Scholar 

  • Roedder, E. (1979) Silicate liquid immiscibility in magmas, in The Evolution of the Igneous rocks, edited by H.S. Yoder, pp. 15–57. Fiftieth Anniversary Perspectives. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Schott, J. (1983) Thermal diffusion and magmatic differentiation: A new look at an old problem. Bull. Mineral. 106, 247–262.

    Google Scholar 

  • Shaw, H.R. (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Amer. J. Sci. 272, 870–893.

    Article  Google Scholar 

  • Shaw, H.R. (1974) Diffusion of H2O in granitic liquids, in Geochemical Transport and Kinetics, edited by A.W. Hofmann et al., pp. 139–170. Publications of the Carnegie Institute, No. 634. Carnegie Institute, Washington, DC.

    Google Scholar 

  • Shaw, H.R., Smith, R.L., and Hildreth, W. (1976) Thermogravitation mechanisms for chemical variations in zoned magma chambers. Geol. Soc. Amer. Abstr. Program. 8, 1102 (abstract).

    Google Scholar 

  • Smith, R.L. (1979) Ash-Flow Magmatism, pp. 5–27. Special Paper No. 180. Geological Society of America, Boulder, Colorado.

    Google Scholar 

  • Soret, C. (1879) Concentrations differences d’une dissolution dont deux parties sont a des temperatures diffrentes. Arch. Sci. Phys. Natur. 2, 48–61.

    Google Scholar 

  • Stebbins, J.F., Carmichael, I.S.E., and Moret, L.K. (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib. Mineral. Petrol. 86, 131–148.

    Article  Google Scholar 

  • Stix, J. Goff, F., Gorton, M.P., Heiken, G., and Garcia, S.R. (1988) Restoration of compositional zonation in the Bandelier silicic magma chamber between two caldera- forming eruptions: geochemistry and origin of the Cerro Toledo rhyolite, Jemez Mountains, New Mexico. J. Geophys. Res. 93, 6192–6147.

    Article  Google Scholar 

  • Toop, G.W., and Samis, C.S. (1962) Activities of ions in silicate melts. Trans. Met. Soc. AIME 224, 878–887.

    Google Scholar 

  • Tyrrell, H.J.V. (1961) Diffusion and Heat Flow in Liquids, Butterworths, London.

    Google Scholar 

  • Wahl, W. (1946) Thermal diffusion—convection as a cause of magmatic differentiation I. Amer. J. Sci. 244, 417–441.

    Article  Google Scholar 

  • Walker, D. (1981) Crystal-liquid and Soret diffusive separation of silicate liquid species. EOS Trans. Amer. Geophys. Union 62, 426 pp.

    Google Scholar 

  • Walker, D., and DeLong, S.E. (1982) Soret separation of MORB magma. Contrib. Mineral Petrol 79, 231–240.

    Article  Google Scholar 

  • Walker, D., and Mullins, O. (1981) Surface tension of natural silicate melts from 1200– 1500 °C and implications for melt structure. Contrib. Mineral Petrol 76, 455–462.

    Article  Google Scholar 

  • Walker, D., Grove, T.L., Longhi, J., Stolper, E.M., and Hays, J.F. (1973) Origin of lunar feldpathic rocks. Earth Planet. Sci. Lett. 20, 325–336.

    Article  Google Scholar 

  • Walker, D., Lesher, C.E., and Hays, J.F. (1981) Soret separation of lunar liquid. Proceedings of the 12th Lunar and Planetary Science Conference, pp. 991–999.

    Google Scholar 

  • Walker, D., Jurewicz, S.R., and Watson, E.B. (1988) Adcumulus dunite growth in a small thermal gradient. Contrib. Mineral Petrol 99, 306–319.

    Article  Google Scholar 

  • Watson, E.B. (1976) Two liquid partition coefficients: experimental data and geochemical implications. Contrib. Mineral Petrol 56, 119–134.

    Article  Google Scholar 

  • Watson, E.B. (1982) Basalt contamination by continental crust: Some experiments and models. Contrib. Mineral Petrol 80, 73–87.

    Article  Google Scholar 

  • Whalen, J.B. (1983) The Ackley City batholith, southern Newfoundland: Evidence for crystal versus liquid-state fractionation. Geochim. Cosmochim. Acta 47, 1443–1457.

    Article  Google Scholar 

  • Whittaker, E.J.W., and Muntus, R. (1970) Ionic radii for uses in geochemistry. Geochim. Cosmochim. Acta 34, 945–956.

    Article  Google Scholar 

  • Wohl, K. (1953) Thermodynamic evaluation of binary and ternary liquid systems. Chem. Eng. Progr. 49, 218–219.

    Google Scholar 

  • Zhang, Y., Walker, D., and Lesher, C.E. (1989) Diffusive crystal dissolution. Contrib. Mineral Petrol 102, 492–513.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lesher, C.E., Walker, D. (1991). Thermal Diffusion in Petrology. In: Ganguly, J. (eds) Diffusion, Atomic Ordering, and Mass Transport. Advances in Physical Geochemistry, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9019-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9019-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9021-3

  • Online ISBN: 978-1-4613-9019-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics