Molecular Dynamics and Diffusion in Silicate Melts

  • J. D. Kubicki
  • A. C. Lasaga
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 8)


The molecular dynamics (MD) computer simulation technique is a simple, flexible, and powerful method for studying the statistical mechanics of complex many-body systems. Computer “experiments” using MD give a detailed picture of atomic movements with time. Molecular dynamics techniques expand the application of the theory of statistical mechanics beyond the use of analytic solutions for simple systems. The computational power in today’s computers enables scientists utilizing MD techniques to both capitalize on this theory with MD and further catalyze theoretical developments. The data obtained in an MD simulation allow the investigator to probe the subtle relationships between the atomic motion and the observable thermodynamic, structural, and kinetic properties. The ability to predict particle trajectories through time is what sets MD apart from all other approaches to the study of transport phenomena.


Molecular Dynamic Molecular Dynamic Simulation Interatomic Potential Molecular Dynamic Calculation Chemical Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alder, B.J., and Wainwright, T.E. (1957) Phase transition for a hard-sphere system. J. Chem. Phys. 27, 1208–1209.CrossRefGoogle Scholar
  2. Alder, B.J., Gass, D.M., and Wainwright, T.E. (1970) Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J. Chem. Phys 53, 3813–3826.CrossRefGoogle Scholar
  3. Andersen, H.C. (1980) Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393.CrossRefGoogle Scholar
  4. Angell, C.A., Cheeseman, P.A and Tammaddon, S. (1982) Pressure enhancement of ion mobilities in liquid silicates from computer simulation studies to 800 kbars. Science 218, 885–887.CrossRefGoogle Scholar
  5. Angell, C.A., Cheeseman, P., and Tammaddon, S. (1983) Water-like transport property anomalies in liquid silicates investigated at high T and P by computer simulation techniques. Bull. Mineral. 106, 87–97.Google Scholar
  6. Angell, C.A., Scamehorn, C.A, Phifer, C.C., Kadiyala, R.R., and Cheeseman, P.A. (1988) Ion dynamics studies of liquid and glassy silicates, and gas-in-liquid solutions. Phys. Chem. Miner. 15, 221–227.CrossRefGoogle Scholar
  7. Ashcroft N.W., and Mermin, N.D. (1976) Solid State Physics. Holt, Rinehart, and Winston, Philadelphia, PA.Google Scholar
  8. Barker, J.A., and Henderson, D. (1976) What is “liquid?” Understanding the states of matter. Rev. Mod. Phys. 48, 587–671.CrossRefGoogle Scholar
  9. Berne, B.J., and Foster, D. (1971) Topics in time-dependent statistical mechanics. Annu. Rev. Phys. Chem. 563–596.Google Scholar
  10. Birch, F. (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 83, 1257–1268.CrossRefGoogle Scholar
  11. Brawer, S.A. (1981) Defects and fluorine diffusion in sodium fluoroberyllate glass: a molecular dynamics study. J. Chem. Phys. 25, 3516–3521.CrossRefGoogle Scholar
  12. Brawer, S.A. (1983) Ab-initio calculation of the vibrational spectra of BeF2 glass simulated by molecular dynamics. J. Chem. Phys. 79, 4539–4545.CrossRefGoogle Scholar
  13. Broughton, J.Q., and Gilmer, G.H. (1983) Molecular dynamics investigation of the crystal- fluid interface. I. Bulk properties. J. Chem. Phys. 79, 5095–5104.CrossRefGoogle Scholar
  14. Busing, W.R. (1981) WMIN. A computer program to model molecules and crystals in terms of potential energy functions. Oak Ridge National Laboratory, Oak Ridge.Google Scholar
  15. Ciccotti, G., and Hoover, W.G., editors (1986) Molecular Dynamics Simulations of Statistical-Mechanical Systems. North-Holland, Amsterdam.Google Scholar
  16. Ciccotti, G., Frenkel, D., and McDonald, I.R., editors (1987) Simulation of Liquids and Solids-Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics. North- Holland, Amsterdam.Google Scholar
  17. Cleveland, C.L. (1988) New equations of motion for molecular dynamics systems that change shape. J. Chem. Phys. 89, 4987–4993.CrossRefGoogle Scholar
  18. Cohen, A. J., and Gordon, R.G. (1976) Modified electron-gas study of the stability, elastic properties and high-pressure behavior of MgO and CaO crystals. Phys. Rev. B 14, 4503–4605.CrossRefGoogle Scholar
  19. Cohen, R.E., Boyer, L.L., and Mehl, M.J. (1987) Lattice dynamics of the potential-induced breathing model: phonon dispersion in the alkaline-earth oxides. Phys. Rev. B 35, 5749–5760.CrossRefGoogle Scholar
  20. Cummings, P.T., and Varner, T.L., Jr. (1988) Nonequilibrium molecular dynamics calculation of the shear viscosity of liquid water. J. Chem. Phys., 89, 6391–6398.CrossRefGoogle Scholar
  21. Da Fano, A., and Jacucci, G. (1977) Vacancy double jumps and atomic diffusion in aluminum and sodium. Phys. Rev. Lett. 39, 950–952.CrossRefGoogle Scholar
  22. Damrauer, R., Burggraf, L.W., Davis, L.P., and Gordon, M.S. (1988) Gas-phase and computational studies of pentacoordinate silicon. J. Amer. Chem. Soc. 110, 6601–6606.CrossRefGoogle Scholar
  23. Evans, M.W., Lie, G.C., and Clementi, E. (1988) Molecular dynamics simulation of water from 10 to 1273 K. J. Chem. Phys. 88, 5157–5165.CrossRefGoogle Scholar
  24. Feuston, B.P., and Garofalini, S.H. (1988) Empirical three-body potential for vitreous silica. J. Chem. Phys. 89, 5818–5824.CrossRefGoogle Scholar
  25. Frenkel, D. (1986) Free-energy computation and first-order phase transitions, in Molecular- Google Scholar
  26. Dynamics Simulation of Statistical-Mechanical Systems, edited by G. Ciccotti and W.G. Hoover, pp. 151–188. Proceedings of the International School of Physics. North- Holland, Amsterdam.Google Scholar
  27. Frenkel, D., and Ladd, A.J.C. (1984) New Monte Carlo method to compute the free energy of arbitrary solids. Applicaton to the fee and hep phases of hard spheres. J. Chem. Phys. 81, 3188–3193.CrossRefGoogle Scholar
  28. Frisch, M. (1983) Gaussian 86 User’s Guide. Carnegie-Mellon University, Pittsburgh, PA.Google Scholar
  29. Garofalini, S.H. (1982) Molecular dynamics simulation of the frequency spectrum of amorphous silica. J. Chem. Phys. 76, 3189–3192.CrossRefGoogle Scholar
  30. Garofalini, S.H. (1983) A molecular dynamics simulation of the vitreous silica surface. J. Chem. Phys. 78, 2069–2072.CrossRefGoogle Scholar
  31. Gibbs, G.V. (1982) Molecules as models for bonding in silicates. Amer. Mineral. 67, 421–450.Google Scholar
  32. Gibbs, G.V., Finger, L.W., and Boisen, M.B. (1987) Molecular mimicry of the bond length-bond strength variations in oxide crystals. Phys. Chem. Miner. 14, 327–331.CrossRefGoogle Scholar
  33. Gordon, R.G., and Kim, Y.S. (1972) Theory for the forces between closed-shell atoms and molecules. J. Chem. Phys. 56, 3122–3133.CrossRefGoogle Scholar
  34. Green, H.S. (1961) Theories of transport in fluids. J. Math. Phys. 2, 344.CrossRefGoogle Scholar
  35. Haile, J.M., and Gupta, S. (1983) Extensions of the molecular dynamics simulation method. II. Isothermal systems. J. Chem. Phys. 79, 3067–3076.CrossRefGoogle Scholar
  36. Heinzinger, K., and Vogel, P.C. (1976) A molecular dynamics study of aqueous solutions. III. A comparison of selected alkali halides. Z. Naturforsch. 31a, 463–475.Google Scholar
  37. Hemley, R.J., Cohen, R.E., Yeganeh-Haeri, A., Mao, H.-K., Weidner, D.J., and Ito, E. (1988) Raman spectroscopy and lattice dynamics of MgSi03-perovskite at high pressure, in Perovskites: A Structure of Great Interest to Geophysics and Materials Science, edited by A. Navrotsky and D.J. Weidner, pp. 35–44. American Geophysical Union, Washington, DC.Google Scholar
  38. Heyes, D.M. (1983) Molecular dynamics simulations of ionic crystal films. J. Chem. Phys. 79, 4010–4027.CrossRefGoogle Scholar
  39. Hill, T.L. (1962) An Introduction to Statistical Thermodynamics. Addison-Wesley, New York.Google Scholar
  40. Hofmann, A.W. (1980) Diffusion in natural silicate melts: A critical review, in Physics of Magmatic Processes, edited by R.B. Hargraves, pp. 385–410. Princeton University Press, Princeton, NJ.Google Scholar
  41. Hoover, W.G. (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697.CrossRefGoogle Scholar
  42. Hoover, W.G., Ladd, A.J.C., and Moran, B. (1982) High-strain-rate plastic flow studied via non-equilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818–1820.CrossRefGoogle Scholar
  43. Iler, R.K. (1979) The Chemistry of Silica. Wiley, New York.Google Scholar
  44. Impey, R.W., Madden, P.A., and McDonald, I.R. (1983) Hydration and mobility of ions in solution. J. Phys. Chem. 87, 5071–5083.CrossRefGoogle Scholar
  45. Inoue, H., and Yasui, I. (1986) A molecular dynamics simulation of the structure of silicate glasses. Phys. Chem. Glasses 28, 63–69.Google Scholar
  46. Jackson, M.D. (1986) Theoretical Investigations of Chemical Bonding in Minerals. Ph.D. Thesis, Harvard University.Google Scholar
  47. Jacucci, G., and McDonald, I.R. (1975) Structure and diffusion in mixtures of rare-gas liquids. Physica 80A, 607–625.CrossRefGoogle Scholar
  48. Karim, O.A., and Haymet, A.D.J. (1988) The ice/water interface: A molecular dynamics simulation study. J. Chem. Phys. 89, 6889–6896.CrossRefGoogle Scholar
  49. Kincaid, J.M., and Erpenbeck, J.J. (1986) The mutual diffusion constant of binary, isotopic hard-sphere mixtures: Molecular dynamics calculations using the Green-Kubo and steady-state methods. J. Chem. Phys. 84, 3418–3431.CrossRefGoogle Scholar
  50. Kubicki, J.D., and Lasaga, A.C. (1987) Computer animation of reactions in silicate melts and glasses. EOS Trans. Amer. Geophys. Union 68, 1539.Google Scholar
  51. Kubicki, J.D., and Lasaga, A.C. (1988) Molecular dynamics simulations of Si02 melt and glass: Ionic and covalent models. Amer. Mineral. 73, 945–955.Google Scholar
  52. Kubicki, J.D., Lasaga, A.C., and Hemley, R.J. (1989) Ab-initio molecular dynamics simulations of forsterite and MgSi03-perovskite. EOS Trans. Amer. Geophys. Union 70, 349 (abstract).Google Scholar
  53. Kubicki, J.D., and Lasaga, A.C. (1990) Molecular dynamics simulation of pressure and temperature effects on MgSi03 and Mg2Si04 melts and glasses. Phys. Chem. Miner. (in press).Google Scholar
  54. Kushiro, I. (1980) Viscosity, density, and structure of silicate melts at high pressures, and their penological applications, in Physics of Magmatic Processes, edited by R.B. Hargraves, pp. 93–120. Princeton University Press, Princeton, NJ.Google Scholar
  55. Kushiro, I. (1983) Effect of pressure on the diffusivity of network-forming cations in melts of jadeitic compositions. Geochim. Cosmochim. Acta 47, 1415–1422.CrossRefGoogle Scholar
  56. Landman, U., Luedtke, W.D., Barnett, R.N., Cleveland, C.L., Ribarsky, M.W., Arnold, E., Ramesh, S., Baumgart, H., Martinez, A., and Khan, B. (1986) Faceting at the silicon (100) crystal-melt interface: Theory and experiment. Phys. Rev. Lett. 56, 155–158.CrossRefGoogle Scholar
  57. Lasaga, A.C., and Gibbs, G.V. (1987) Applications of quantum mechanical potential surfaces to mineral physics calculations. Phys. Chem. Miner. 14, 107–117.CrossRefGoogle Scholar
  58. Lasaga, A.C., and Gibbs, G.V. (1988) Quantum mechanical potential surfaces and calculations on minerals and molecular clusters. Phys. Chem. Miner. 16, 29–41.CrossRefGoogle Scholar
  59. Lasaga, A.C., and Gibbs, G.V. (1990) Ab-initio quantum mechanical calculations of water-rock interactions. Adsorption and hydrolysis reactions. Amer. J. Sci. 290, 263–295.CrossRefGoogle Scholar
  60. Leinenweber, K., and Navrotsky, A. (1988) A transferable interatomic potential for crystalline phases in the system Mg0-Si02. Phys. Chem. Miner. 15, 588–596.CrossRefGoogle Scholar
  61. Lutsko, J.F., Wolf, D., and Yip, S. (1988a) Molecular dynamics calculation of free energy. J. Chem. Phys. 88, 6525–6528.CrossRefGoogle Scholar
  62. Lutsko, J.F., Wolf, D., Yip, S., Phillpot, S.R., and Nguyen, T. (1988b) Molecular-dynamics method for the simulation of bulk-solid interfaces at high temperatures. Phys. Rev. B 38, 11572–11581.CrossRefGoogle Scholar
  63. Madden, P.A. (1986) Simulation of properties of spectroscopic interest, in Molecular-Dynamics Simulation of Statistical-Mechanical Systems, edited by G. Ciccotti and W.G. Hoover, pp. 371–400. Proceedings of the International School of Physics. North- Holland, Amsterdam.Google Scholar
  64. Maple, J.R., Dinur, U., and Hagler, A.T. (1988) Derivation of force fields for molecular mechanics and dynamics from ab-initio energy surfaces. Proc. Nat. Acad. Sci. U.S.A. 85, 5350–5354.CrossRefGoogle Scholar
  65. March, N.H., and Deb, B.M. (1987) The Single Particle Density in Physics and Chemistry. Academic Press, New York.Google Scholar
  66. Matsui, M., (1988) Molecular dynamics study of MgSi03 perovskite. Phys. Chem. Miner. 16, 234–238.CrossRefGoogle Scholar
  67. Matsui, Y., Kawamura, K., and Syono, Y. (1981) Molecular dynamics calculations applied to silicate systems: Molten and vitreous MgSi03 and Mg2Si04, in High Pressure Research in Geophysics, Advances in Earth and Planetary Science, Vol. 12, S. Akimoto and M.H. Manghnani, pp. 511–524. Reidel, Boston.Google Scholar
  68. Mehl, M.J., Hemley, R.J., and Boyer, L.L. (1986) Potential-induced breathing model for the elastic moduli and high-pressure behavior of the cubic alkaline-earth oxides. Phys. Rev. B 33, 8685–8696.CrossRefGoogle Scholar
  69. Mitra, S.K. (1982) Molecular dynamics simulation on silicon dioxide glass. Phil. Mag. B 45, 529–548.CrossRefGoogle Scholar
  70. Mitra, S.K., and Hockney, R.W. (1983) Molecular dynamics simulation of the structure of soda silica. Philos. Mag. B 48, 151–167.CrossRefGoogle Scholar
  71. Mitra, S.K., Amini, M., Fincham, D., and Hockney, R.W. (1981) Molecular dynamics simulation of silicon dioxide glass. Philos. Mag. B 43, 365–372.CrossRefGoogle Scholar
  72. Mozzi, R.L., and Warren, B.E. (1969) The structure of vitreous silica. J. Appl. Crystall. 2, 164–172.CrossRefGoogle Scholar
  73. Muhlhausen, C., and Gordon, R.G. (1981) Electron-gas thepry of ionic crystals, including many-body effects. Phys. Rev. B 23, 900–923.CrossRefGoogle Scholar
  74. Nosé, S. (1984) A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519.CrossRefGoogle Scholar
  75. Nose, S., and Yonezawa, F. (1986) Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system. J. Chem. Phys. 84, 1803–1814.CrossRefGoogle Scholar
  76. Oishi, Y., Nanba, M., and Pask, J.A. (1981) Analysis of liquid-state interdiffusion in the system Ca0-Al203-Si02 using multiatomic models. J. Amer. Ceram. Soc. 65, 247–253.CrossRefGoogle Scholar
  77. Palinkas, G., Riede, W.O., and Heinzinger, K. (1977) A molecular dynamics study of aqueous solutions. VII. Improved simulation and comparison with X-ray investigations of a NaCl solution. Z. Naturforsch. 32a, 1137–1145.Google Scholar
  78. Parinello, M., and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190.CrossRefGoogle Scholar
  79. Parker, S.C., and Price, G.D. (1990) Computer modelling of the structure and thermodynamic properties of silicate minerals, in Computer Modelling of Fluids, Polymers and Solids, edited by C.R.A. Catlow, S.C. Parker, and M.P. Allen, Series C: Mathematical and Physical Sciences, Vol. 293, pp. 405–429. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  80. Parr, R.G., and Yang, W. (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford.Google Scholar
  81. Rahman, A. (1964) Correlation in the motion of atoms in liquid argon. Phys. Rev. 136, A405–A411.CrossRefGoogle Scholar
  82. Rahman, A. (1976) Particle motions in superionic conductors. J. Chem. Phys. 65, 4845–4848.CrossRefGoogle Scholar
  83. Rahman, A., and Stillinger, F.H. (1971) Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359.CrossRefGoogle Scholar
  84. Scarfe, C.M., Mysen, B.O., and Virgo, D. (1987) Pressure dependence of the viscosity of silicate melts, in Magmatic Processes: Physiochemical Principles, edited by B.O. Mysen, pp. 59–67. Special Publication No. 1. The Geochemical Society, University Park, PA.Google Scholar
  85. Schofleld, P. (1973) Computer simulation studies of the liquid state. Comput. Phys. Commun. 5, 17–23.CrossRefGoogle Scholar
  86. Soules, T.F. (1979) A molecular dynamics calculation of the structure of sodium silicate glasses. J. Chem. Phys. 71, 4570–4578.CrossRefGoogle Scholar
  87. Sprik, M., and Klein, M.L. (1988) A polarizable model for water using distributed charge sites. J. Chem. Phys. 89, 7556–7560.CrossRefGoogle Scholar
  88. Stixrude, L., and Bukowinski, M.S.T. (1988) Simple covalent potential models of tetra- hedral Si02: applications to a-quartz and coesite at pressure. Phys. Chem. Miner. 16, 199–206.CrossRefGoogle Scholar
  89. Szasz, G.I., and Heinzinger, K. (1983) A molecular dynamics study of the translational and rotational motions in an aqueous Lil solution. J. Chem. Phys. 79, 3467–3473.CrossRefGoogle Scholar
  90. Tanaka, H., Nakanishi, K., and Watanabe, N. (1983) Constant temperature molecular dynamics calculation on Lennard-Jones fluid and its application to water. J. Chem. Phys. 78, 2626–2634.CrossRefGoogle Scholar
  91. Tsai, D.H., Bullough, R., and Perrin, R.C. (1970) Molecular dynamical studies of the motion of point defects in a crystalline lattice. J. Phys. C 3, 2022–2036.CrossRefGoogle Scholar
  92. Tsuneyuki, S., Tsukada, M., Aoki, H., and Matsui, Y. (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys. Rev. Lett. 61, 869–872.CrossRefGoogle Scholar
  93. Verlet, L. (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103.CrossRefGoogle Scholar
  94. Wall, A., and Price, G.D. (1988) Defects and diffusion in MgSi03 perovskite: a computer simulation, in Perovskite: A Structure of Great Interest to Geophysics and Materials Science, edited by A. Navrotsky and D.J. Weidner, pp. 45–53. American Geophysical Union, Washington, DC.Google Scholar
  95. Watson, R.E. (1958) Analytic Hartree-Fock solutions for 02-. Phys. Rev. 1ll, 1108–1110.Google Scholar
  96. Welch D.O., Dienes, G.J. and Paskin, A. (1978) A molecular dynamical study of the equation of state of solids at high temperature and pressure. J. Phys. Chem. Solids 39, 589–603.CrossRefGoogle Scholar
  97. Wilson, M.A., Pohorille, and Pratt, L.R. (1985) Molecular dynamics test of the Brownian description of Na+ motion in water. J. Chem. Phys. 83, 5832–5836.CrossRefGoogle Scholar
  98. Woodcock, L.V. (1975) Molecular dynamics calculations on molten ionic salts, in Advances in Molten Salt Chemistry, Vol. 3, edited by J. Braunstein, G. Mamantov, and G.P. Smith, pp. 1–74. Plenum Press, New York and London.CrossRefGoogle Scholar
  99. Woodcock, L.V., Angell, C.A., and Cheeseman, P. (1976) Molecular dynamics studies of the vitreous state: Ionic systems and silica. J. Chem. Phys. 65, 1565–1567.CrossRefGoogle Scholar
  100. Xue, X., Stebbins, J.F., Kanzaki, M., and Tromes, R.G. (1989) Silicon coordination and speciation changes in a silicate liquid at high pressure, Science, 245, 962–964.CrossRefGoogle Scholar
  101. Yin, C.D., Okuno, M., Morikawa, H., and Marumo, F. (1983) Structure analysis of MgSi03 glass. J. Non-Cryst. Solids 55, 131–141.CrossRefGoogle Scholar
  102. Yoder, H.S. (1976) Generation of Basatic Magma, National Academy of Sciences, Washington, DC.Google Scholar
  103. Zwanzig, R. (1965) Time-correlation functions and transport coefficients in statistical mechanics. Ann. Rev. Phys. Chem. 16, 67–102.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • J. D. Kubicki
  • A. C. Lasaga

There are no affiliations available

Personalised recommendations