Advertisement

Positive Independence and Enumeration of Codes with a Given Distance Pattern

  • M. Deza
  • D. K. Ray-Chaudhuri
  • N. M. Singhi
Conference paper
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 20)

Abstract

A concept of P-independent sets is defined for Z-modules or convex sets. P- independence gives a convex analogue of usual independence. It is used for codes. A quasipolynomial type theorem is proved for the number of inequivalent codes with a given distance pattern and length. The relationships with the classical coding problem and the design problem are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Assouad,P., Sous espaces de l’ et inequalités hypermetriques, C.R. Acad. Sci., Paris 294, Series A (1982), pp. 439–442.MathSciNetzbMATHGoogle Scholar
  2. [AD]
    Assouad, P. and Deza, M., Metric subspaces of L1, Publ. Math. d’Orsay, Universite, Paris-Sud (1982).Google Scholar
  3. [D1]
    Deza, M. (Tylkin), Realizability of matrices of distance in unitary cubes (in Russian), Prol. Kibem, 7 (1962), pp. 31–42.Google Scholar
  4. [D2]
    Deza, M., Isometries of the hypergraphs, Proc. Int. Conference on Theory of Graphs, Calcutta, (ed. A.E. Rao) (1977); McMillan, India (1979), pp. 174–189.Google Scholar
  5. [D3]
    Deza, M., Small Pentagonal spaces, Rendiconti del Seminario Matematico di’ brescia, Volume settino (1984), pp. 269–282.Google Scholar
  6. [DR]
    Deza, M. and Rosenberg, I.G., Intersections and distance patterns, Util. Math., 25 (1984), pp. 191–212.MathSciNetzbMATHGoogle Scholar
  7. [DS]
    Deza, M. and Singhi N.M., Rigid Pentagons in Hypercubes, Graphs and Combinaterics, 4 (1988), pp. 31–42.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [R]
    Ryser, H., Combinaterial Mathematics, the Cams Mathematical Monographs, no. 14, The Mathematical Association of America.Google Scholar
  9. [RS1]
    Ray-Chaudhuri, D.K. and Singhi, N.M., On existence and number of orthogonal arrays, J. of Combinatorial Theory A, 47 (1988), pp. 28–36.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [RS2]
    Ray-Chaudhuri, D.K. and Singhi, N.M., q-analogues of t-designs and their existence, Linear Algebra And Its Applications, 114/115 (1989), pp. 57–68.Google Scholar
  11. [S]
    Stanley, R., Combinatorics and Commutative Algebra, Birkhäuser, Boston (1983).zbMATHGoogle Scholar
  12. [SS]
    Singhi, N.M., and Shrikhande, S.S., A reciprocity relation for t-designs, Europ. J. Combinatorics, 8 (1987), pp. 59–68.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • M. Deza
    • 1
  • D. K. Ray-Chaudhuri
    • 2
  • N. M. Singhi
    • 3
  1. 1.C.N.E.S. UA 212Université Paris 7France
  2. 2.Department of MathematicsOhio State UniversityColumbusUSA
  3. 3.School of MathematicsTata Institute of Fundamental ResearchColaba, BombayIndia

Personalised recommendations