Skip to main content

Self-Orthogonal Codes and the Topology of Spinor Groups

  • Conference paper
Book cover Coding Theory and Design Theory

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 20))

Abstract

Maximal doubly-even self-orthogonal binary linear codes correspond to the maximal elementary abelian 2-groups of the spinor group Spin(n). We will describe the correspondence and discuss various techniques from the algebraic topology of Spin(n) which may be useful in studying self-orthogonal codes. In particular, Quillen’s results in equivariant cohomology theory coupled with some Morse theory may allow one to address certain questions on the minimum weight of doubly-even self-orthogonal codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michael F. Atiyah and Raoul Bott, The Yang-Mills equations over Riemann surfaces, Philosophical Transactions of the Royal Society of London, A 308 (1982), pp. 523–615.

    Google Scholar 

  2. Michael F. Atiyah, Raoul Bott and Arnold Shapiro, Clifford Modules, Topology, 3(Supp 1) (1964), pp. 3–38.

    Article  MathSciNet  Google Scholar 

  3. Armand Borel, Seminar on Transformation Groups, Annals of Mathematics Studies 46, Princeton University Press, Princeton, N. J., 1960.

    MATH  Google Scholar 

  4. Armand Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Mathematical Journal, 13 (1961), pp. 216–240.

    Article  MathSciNet  MATH  Google Scholar 

  5. Armand Borel, On the p-rank of compact connected Lie groups, preprint 1987.

    Google Scholar 

  6. Armand Borel and Jean-Pierre Serre, Sur certains sous-groupes des groupes de Lie compacts, Commentarii Mathematici Helvetici, 27 (1953), pp. 128–139.

    Article  MathSciNet  MATH  Google Scholar 

  7. Raoul Bott, Nondegenerate critical manifolds, Annals of Mathematics, 60 (1954), pp. 248–261.

    Article  MathSciNet  MATH  Google Scholar 

  8. Raoul Bott, The stable homotopy of the classical groups, Annals of Mathematics, 70 (1959), pp. 313–337.

    Article  MathSciNet  MATH  Google Scholar 

  9. Theodor Bröcker and Tammo tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Mathematics 98, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.

    MATH  Google Scholar 

  10. John H. Conway and Vera Pless, On the enumeration of self-dual codes, Journal of Combinatorial Theory, Series A, 28 (1980), pp. 26–53.

    MathSciNet  MATH  Google Scholar 

  11. Simon K. Donaldson, An application of gauge theory to the topology of 4-manifolds, Journal of Differential Geometry, 18 (1983), pp. 279–315.

    MathSciNet  MATH  Google Scholar 

  12. Theodore Prankel, Critical submanifolds of the classical groups and Stiefel manifolds, in Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse, Stewart S. Cairns, editor, Princeton University Press, Princeton, N. J., 1965, pp. 37–53.

    Google Scholar 

  13. Daniel S. Freed and Karen K. Uhlenbeck, Instantons and Four-Manifolds, Mathematical Sciences Research Institute Publications 1, Springer-Verlag, New York, Heidelberg, Berlin, 1984.

    MATH  Google Scholar 

  14. Sigurdur Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics 80, Academic Press, New York, San Francisco, London, 1978.

    MATH  Google Scholar 

  15. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of Differential Geometry, Interscience Tracts in Pure and Applied Mathematics 15, Interscience Publishers, New York, London, Sydney, 1963/1969.

    MATH  Google Scholar 

  16. Saunders MacLane, Homology, Grundlehren der mathematischen Wissenschaften 114, Springer- Verlag, Berlin, Göttingen, Heidelberg, 1963.

    MATH  Google Scholar 

  17. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Mathematical Library 16, North-Holland, Amsterdam, New York, Oxford, 1978.

    Google Scholar 

  18. Haynes Miller, Stable splittings of Stiefel manifolds, Topology, 24 (1985), pp. 411–419.

    Article  MathSciNet  MATH  Google Scholar 

  19. John W. Milnor, Morse Theory, Annals of Mathematics Studies 51, Princeton University Press, Princeton, N. J., 1969.

    Google Scholar 

  20. John W. Milnor and James D. Stasheff, Characteristic Classes, Annals of Mathematics Studies 76, Princeton University Press, Princeton, N. J., 1974.

    MATH  Google Scholar 

  21. Vera Pless, A classification of self-orthogonal codes over GF(2), Discrete Mathematics, 3 (1972), pp. 209–246.

    Article  MathSciNet  MATH  Google Scholar 

  22. Vera Pless and N. J. A. Sloane, On the classification and enumeration of self-dual codes, Journal of Combinatorial Theory, Series A, 18 (1975), pp. 313–335.

    Article  MathSciNet  MATH  Google Scholar 

  23. Daniel Quillen, The spectrum of an equivariant cohomology ring I,II, Annals of Mathematics, 94 (1971), pp. 549–602.

    Article  MathSciNet  MATH  Google Scholar 

  24. Daniel Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Mathematische Annalen, 194 (1971), pp. 197–212.

    Article  MathSciNet  MATH  Google Scholar 

  25. Norman Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, N. J., 1951.

    MATH  Google Scholar 

  26. George W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics 61, Springer-Verlag, New York, Heidelberg, Berlin, 1978.

    MATH  Google Scholar 

  27. Jay A. Wood, Spinor groups and algebraic coding theory, Journal of Combinatorial Theory, Series A (to appear).

    Google Scholar 

  28. Jay A. Wood, Flat connections, spinor groups and error-correcting codes, submitted to the Proceedings of the 1988 Northwestern International Conference on Algebraic Topology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Wood, J.A. (1990). Self-Orthogonal Codes and the Topology of Spinor Groups. In: Coding Theory and Design Theory. The IMA Volumes in Mathematics and Its Applications, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8994-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8994-1_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8996-5

  • Online ISBN: 978-1-4613-8994-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics