Skip to main content

The Incidence Algebra of a Uniform Poset

  • Conference paper
Coding Theory and Design Theory

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 20))

Abstract

Let P,≤ denote a finite graded poset of rank N ≥ 2, with fibers P 0, P 1, ... , P N. Let the matrices L i, R i, E *i (0 ≤ i ≤ N) have rows and columns indexed by P, and entries

$$ \begin{gathered} {{({{L}_{i}})}_{{xy}}} = 1\;if\;x \in {{P}_{{i - 1}}},\;y \in {{P}_{i}},\;x \leqslant y,\quad and\quad 0\;otherwise\;(1 \leqslant i \leqslant N), \hfill \\ {{({{R}_{i}})}_{{xy}}} = 1\;if\;x \in {{P}_{{i + 1}}},\;y \in {{P}_{i}},\;y \leqslant x,\quad and\quad 0\;otherwise\;(1 \leqslant i \leqslant N - 1), \hfill \\ {{(E_{i}^{*})}_{{xy}}} = 1\;if\;x,y \in {{P}_{i}},\;\;x = y,\quad and\quad 0\;otherwise\;(1 \leqslant i \leqslant N), \hfill \\ \end{gathered} $$

and L 0 = R N = 0. The incidence algebra of P is the real matrix algebra generated by L i, R i, E *i (0 ≤ iN). P is uniform if there exists real numbers e +i , e -i , fi, (1 ≤ iN) (satisfying a certain condition) such that

$$ e_{i}^{ - }{{R}_{{i - 2}}}{{L}_{{i - 1}}}{{L}_{i}} + {{L}_{i}}{{R}_{{i - 1}}}{{L}_{i}} + e_{i}^{ + }{{L}_{i}}{{L}_{{i + 1}}}{{R}_{i}} = {{f}_{i}}{{L}_{i}}\quad (1 \leqslant i \leqslant N)\;({{R}_{{ - 1}}} = {{L}_{{N + 1}}} = 0). $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bannai, T. Ito, Algebraic combinatorics I: Association Schemes, Benjamin-Cummings Lecture Note 58. New York, 1984.

    MATH  Google Scholar 

  2. R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389–419.

    MathSciNet  MATH  Google Scholar 

  3. R. C. Bose, W. G. Bridges, M. S. Shrikhande, A characterization of partial geometric designs, Discrete Math. 16 (1976), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. C. Bose, W. G. Bridges, M.S. Shrikhande, Partial geometric designs and two-class partially balanced designs, Discrete Math. 21 (1978), 97–101.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. C. Bose, R. Miskimins, Partial geometric spaces of m dimensions, Algebraic methods in graph theory, Szeged (1978), 37–45.

    Google Scholar 

  6. R. C. Bose, S. S. Shrikhande, N.M. Singhi, Edge regular multigraphs and partial geometric designs, Proceedings of the International Colloquium on Combinatorial Theory, Acad. Lincei, Rome (1973), 49–81.

    Google Scholar 

  7. A. Brouwer, A. Cohen, A. Neumaier, Distance-regular graphs, Springer, Berlin, 1988. preprint.

    Google Scholar 

  8. P. J. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982), 75–85.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Delsarte, Association schemes and t-designs in regular semilattices, J. Combin. Theory Ser. A 20 (1976), 230–243.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Delsarte, Bilinear forms over a finite fíeld with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), 226–241.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Delsarte, J. Goethals, Alternating bilinear forms over GF(q), J. Combin. Theory Ser. A 25 (1978), 26–50.

    Article  MathSciNet  Google Scholar 

  12. M. Doob, On graph products and association schemes, Utilitas Math. 1 (1972), 291–302.

    MathSciNet  MATH  Google Scholar 

  13. C. Dunkl, An addition theorem for Hahn polynomials: the spherical functions, SIAM J. Math. Anal. 9 (1978), 627–637.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Dunkl, An addition theorem for some q-Hahn polynomials, Monatsh. Math. 85 (1977), 5–37.

    Article  MathSciNet  Google Scholar 

  15. J. Hemmeter, A new family of distance-regular graphs, preprint.

    Google Scholar 

  16. A. A. Ivanov, M. E. Muzichuk, V. A. Ustimenko, On anew family of (P and Q)-polynomial schemes, preprint.

    Google Scholar 

  17. R. Laskar, Proc. 10th Southern Conference on Combinatorics, Graph Theory and Computing, Vol. 2 (Congress Numeratium XXIV) (1979), 645–650.

    Google Scholar 

  18. R. Laskar, J. Dunbar, Partial geometry of dimension three, J. Combin. Theory Ser. A 24 (1978), 187–201.

    Article  MathSciNet  Google Scholar 

  19. R. Laskar and A. Sprague, A characterization of partial geometric lattices of rank 4, Enumeration and Design, (Jackson and Vanstone, eds), Academic Press, Toronto (1984), 215–224.

    Google Scholar 

  20. R. Liebler and A. Meyerowitz, Partial geometric lattices II: Association schemes, J. Statist. Plann. Inference 18 (1988), 161–176.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Meyerowitz, Partial geometric lattices with generalized quadrangles as planes, Algebras Groups Geom. 2 (1985), 436–454.

    MathSciNet  MATH  Google Scholar 

  22. A. Meyerowitz, R. Miskimins, Partial geometric lattices I. Regularity conditions, J. Statist. Plann. Inference 17 (1987), 21–50.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Neumaier, Distance matrices and n-dimensional designs, European J. Combin. 2 (1981), 165–172.

    MathSciNet  MATH  Google Scholar 

  24. A. Neumaier, Quasi-residual 2-designs, 11/2-designs, and strongly regular multigraphs, Geom. Dedicata 12 (1982), 351–366.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Neumaier, Regular cliques in graphs and special 11/2-designs, Finite geometries and designs, Proc. Second Isle of Thorns Conference, London Math. Soc. Lecture Notes Ser. 49 (P. J. Cameron, J. W. Hirschfield, D. R. Hughes, eds.), Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  26. A. P. Sprague, A characterization of 3-nets, J. Combin. Theory Ser. A 27 (1979), 223–253.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. P. Sprague, Pasch’s axiom and projective spaces, Discrete Math. 33 (1981), 79–87.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. P. Sprague, Incidence structures whose planes are nets, European J. Combin. 2 (1981), 193–204.

    MathSciNet  MATH  Google Scholar 

  29. D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups, Amer. J. Math. 102 (4) (1980), 625–662.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Stanton, Three addition theorems for some q-Krawtchouk polynomials, Geom. Dedicata 10 (1981), 403–425.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Stanton, A partially ordered set and q-Krawtchouk polynomials, J. Combin. Theory Ser. A 30 (1981), 276–284.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Stanton, Orthogonal polynomials and Chevalley groups, Special Functions: Group theoretical aspects and applications, (Askey et. al., eds) (1984), 87–128.

    Google Scholar 

  33. D. Stanton, Harmonic on posets, J. Combin. Theory Ser. A 40 (1985), 136–149.

    Article  MathSciNet  MATH  Google Scholar 

  34. V. A. Ustimenko, On some properties of the geometry of the Chevalley groups and their generalizations, preprint, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Terwilliger, P. (1990). The Incidence Algebra of a Uniform Poset. In: Coding Theory and Design Theory. The IMA Volumes in Mathematics and Its Applications, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8994-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8994-1_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8996-5

  • Online ISBN: 978-1-4613-8994-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics