Advertisement

Inside Euclid’s Algorithm

  • Willard L. Eastman
Conference paper
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 20)

Abstract

The polynomial version of Euclid’s algorithm is expanded to remove the inherent polynomial division. The expanded algorithm exhibits a two loop structure. The choice of which loop to execute at a given iteration depends on whether the iteration completes, or does not complete, a polynomial division. It is shown that one of the loops can be deleted, producing a clean version of the algorithm suitable for implementation in VLSI. The new version of Euclid’s algorithm is computationally equivalent to the standard long division version, but is more efficient in terms of hardware. Processing cells are presented for a two-dimensional systolic array architecture capable, with pipelining, of computing polynomial gcd’s in constant time. The new version of Euclid’s algorithm bears a strong resemblance to the Berlekamp-Massey algorithm.

Key words

Euclid’s algorithm polynomial division greatest common divisor VLSI implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Heath, T.L.(ed. and TRANSL.), The Thirteen Books of Euclid’s Elements, Dover, New York, 1956.zbMATHGoogle Scholar
  2. [2]
    Sugiyama, Y., M. Kasahara, S. Hirasawa, and T. Namekawa, A Method for Solving Key Equation for Decoding Goppa Codes, Information and Control, 27 (1975), pp. 87–99.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Mirasawa, W.H., Continued Fractions and Linear Recurrences, Mathematics of Computation, 29 (1975), pp. 173–180.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Welch, L.R. and R.A. Scholtz, Continued Fractions and Berlekamp’s Algorithm, IEEE Trans. on Information Theory, IT-25 (1979), pp. 19–27.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Berlekamp, E.R., Algebraic Decoding Theory, McGraw-Hill, New York, 1968.Google Scholar
  6. [6]
    Massey, J.L., Shift-Register Synthesis and BCH Decoding, IEEE Trans. on Information Theory, IT-15 (1969), pp. 122–127.MathSciNetCrossRefGoogle Scholar
  7. [7]
    McEliece, R.J. AND J.B. Shearer, A Property of Euclid’s Algorithm and an Application to Padé Approximation, SIAM J. Appl. Math., 34 (1978), pp. 611–615.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Brent, R.P., F.G. Gustavson, and D.Y.Y. Yun, Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants, Jour. of Algorithms, 1 (1980), pp. 259–295.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Sugiyama, Y., An Algorithm for Solving Discrete-Time Wiener-Hopf Equations Based upon Euclid’s Algorithm, IEEE Trans. on Information Theory, IT-32 (1986), pp. 394–409.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Shao, H.M., T.K. Truong, L.J. Deutsch, J.H. Yuen, and I.S. Reed, A VLSI Design of a Pipeline Reed-Solomon Decoder, IEEE Trans. on Computers, C-34 (1985), pp. 393–403.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Brent, R.P. and H.T. Kung, Systolic VLSI Arrays for Linear-Time GCD Computation, in VLSI ’83, F. Anceau and E.J. Aas, eds., Elsevier (North-Holland), 1983.Google Scholar
  12. [12]
    Knuth, D.E., The Art of Computer Programming, Addison-Wesley, Reading, MA, 1969.zbMATHGoogle Scholar
  13. [13]
    Iverson, K.E., A Programming Language, Wiley, New York, 1962.zbMATHGoogle Scholar
  14. [14]
    Kung, H.T., Why Systolic Architectures, Computer Magazine, 15-1 (1982), pp. 37–46.Google Scholar
  15. [15]
    Burton, H.O., Inversionless Decoding of Binary BCH Codes, IEEE Trans. on Information Theory, IT-17 (1971), pp. 464–466.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Eastman, W.L., Euclidean Decoders for BCH Codes, Rome Air Development Center Technical Report RADC-TR-88-44.Google Scholar
  17. [17]
    Vaccaro, J.J., private communication.Google Scholar
  18. [18]
    Eastman, W.L., Euclideanization of the Berlekamp-Massey Algorithm, presented at the 1988 Tactical Communications Conference.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • Willard L. Eastman
    • 1
  1. 1.The MITRE CorporationBedfordUSA

Personalised recommendations