On the Structure of Five-Component Microemulsions

  • N. J. Chang
  • J. F. Billman
  • R. A. Licklider
  • E. W. Kaler


A family of 5-component microemulsions made with sodium 4-(1’-heptylonyl)-benzenesulfonate, iso-butyl alcohol, dodecane, and NaCl brines of various concentrations has been studied with small-angle neutron scattering (SANS) and quasielastic light scattering (QLS) methods. Both techniques show that when the water volume fraction, ФW, is either less than 0.20 or greater than 0.75, the size of the well-defined droplets (water in oil or oil in water) increases nearly linearly as the volume fraction of the dispersed phases increases. The water in oil droplets are spherical and polydispersed in size, while the oil in water droplets are prolate with an aspect ratio of approximately 3:1. For the intermediate aqueous volume fractions between 0.20 and 0.75, both the QLS and SANS results indicate that the length scales in the microemulsion phase vary approximately in proportion to Ф(1 − ФW). These observations favor a model of bicontinuous structure in the intermediate regime.


Apparent Diffusion Coefficient Scatter Length Density Microemulsion Droplet Water Volume Fraction Microemulsion Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A. Winsor, “Solvent Properties of Amphiphilic Compounds, ” Butterworths, London, 1954.Google Scholar
  2. 2.
    E.W. Kaler, K.E. Bennett, H.T. Davis, and L.E. Scriven, J. Chem. Phys. 79, 5673 (1983).CrossRefGoogle Scholar
  3. 3.
    E.W. Kaler, H.T. Davis, and L.E. Scriven, J. Chem. Phys. 79, 5685 (1983).CrossRefGoogle Scholar
  4. 4.
    L. Auvray, J.-P. Cotton, R. Ober, and C. Taupin, J. Physique 45, 913 (1984).Google Scholar
  5. 5.
    A.M. Cazabat and D. Langevin, J. Chem. Phys. 74, 3148 (1981).CrossRefGoogle Scholar
  6. 6.
    M. Zulauf and H.F. Eicke, J. Phys. Chem. 83, 480 (1979).CrossRefGoogle Scholar
  7. 7.
    L.E. Scriven, Nature 263, 123 (1976), and in “Micellization, Solubilization, and Microemulsions, p. 877, K. Mittal, ed., Plenum, New York, 1977.Google Scholar
  8. 8.
    B. Chu in “Laser Light Scattering, Academic Press, San Diego, California, 1974.Google Scholar
  9. 9.
    G.K. Batchelor, J. Fluid Mech. 74, (1976).Google Scholar
  10. 10.
    B.J. Ackerson, J. Chem. Phys. 64, 242 (1976).CrossRefGoogle Scholar
  11. 11.
    A.R. Altenberger and J.M. Deutch, J. Chem. Phys. 59, 894 (1973).CrossRefGoogle Scholar
  12. 12.
    S. Hanna, W. Hess, and R. Klein, Physica 111A, 181 (1982).Google Scholar
  13. 13.
    B.U. Felderhof, J. Phys. A: Math. Gen. 11, 929 (1978).CrossRefGoogle Scholar
  14. 14.
    H.M. Fijnaut, J. Chem. Phys. 74, 6857 (1981).CrossRefGoogle Scholar
  15. 15.
    M. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).CrossRefGoogle Scholar
  16. 16.
    L. Blum and G. Stell, J. Chem. Phys. 71, 1 (1979).CrossRefGoogle Scholar
  17. 17.
    E.J. Verwey and J.Th.F. Overbeek, in “Theory of the Stability of Lyophobic Colloids,” Elsevier, Amsterdam, 1948.Google Scholar
  18. 18.
    J.B. Hayter and J. Penfold, Molec. Phys. 42, 109 (1981).CrossRefGoogle Scholar
  19. 19.
    P. van Beurten and A. Vrij, J. Chem. Phys. 74, 2744 (1981).CrossRefGoogle Scholar
  20. 20.
    J.B. Hayter and J. Penfold, Colloid & Polymer Sci. 261, 1022 (1983).CrossRefGoogle Scholar
  21. 21.
    E. Jackman, in “Photon Correlation and Light Beating Spectroscopy,” H.Z. Cummins and E.R. Pike, eds., Plenum, New York, 1974.Google Scholar
  22. 22.
    P.N. Pusey, J. Phys. A: Math. Gen. 8, 1433 (1975).CrossRefGoogle Scholar
  23. 23.
    N.J. Chang and E.W. Kaler, Langmuir 2, 184 (1986).CrossRefGoogle Scholar
  24. 24.
    N.J. Chang and E.W. Kaler, J. Phys. Chem. 89, 2996 (1985).CrossRefGoogle Scholar
  25. 25.
    D.E. Koppel, J. Chem. Phys. 57, 4814 (1972).CrossRefGoogle Scholar
  26. 26.
    S.J. Chen, D.F. Evans, and B.W. Ninham, J. Phys. Chem. 88, 1631 (1984).CrossRefGoogle Scholar
  27. 27.
    D.J. Cebula, R.H. Ottewill, J. Ralston, and P.N. Pusey, J. Chem. Soc. Faraday Trans. I 77, 2585 (1981).CrossRefGoogle Scholar
  28. 28.
    E. Ruckenstein and R. Krishan, J. Colloid and Interface Sci. 75, 476 (1980).CrossRefGoogle Scholar
  29. 29.
    S.A. Safran, this volume.Google Scholar
  30. 30.
    N.W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).CrossRefGoogle Scholar
  31. 31.
    R.V. Sharma and K.C. Sharma, Physica 89A, 213 (1977).Google Scholar
  32. 32.
    J.P. Hansen and J.B. Hayter, Molec. Phys. 46, 651 (1982).CrossRefGoogle Scholar
  33. 33.
    F. Perrin, J. Phys. Rad. 7, 1 (1936).CrossRefGoogle Scholar
  34. 34.
    Y. Talmon and S. Prager, J. Chem. Phys. 69, 2984 (1978).CrossRefGoogle Scholar
  35. 35.
    P.G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
  36. 36.
    K.E. Bennett, J.C. Hatfield, H.T. Davis, C.W. Macosko, and L.E. Scriven, in “Microemulsions, ” I.D. Robb, ed., Plenum, New York, 1982.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • N. J. Chang
  • J. F. Billman
  • R. A. Licklider
  • E. W. Kaler

There are no affiliations available

Personalised recommendations