Advertisement

On the Specific Damaging Effects of Surface and Near-Surface Inclusions

  • Marc-Henri Ambroise
  • Thierry Bretheau
  • André Zaoui

Abstract

The most significant results of an experimental study on the damaging effects of exogeneous ceramic inclusions in nickel-based superalloys are first reported. Attention is focused on some observations which conflict with a too-simple two-dimensional analysis of the problem. A more realistic theoretical treatment is then developed, which allows the calculation of configurational force and torque acting on a near-surface or surface inhomogeneity: the corresponding interfacial discontinuity of the elastostatic “energy—momentum” tensor is shown to be responsible for specific damaging effects of such inhomogeneities which could not be interpreted otherwise.

Keywords

Fatigue Crack Tensile Axis Interfacial Cohesion Electron Beam Scanning Moire Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambroise, M. H., Bretheau, T., and Viaris de Lesegno, P. (1987), Surface microextensometry by means of moiré interferometry with a scanning electron microscope, J. Appl. Mech., 54, 237–239.ADSCrossRefGoogle Scholar
  2. Ambroise, M. H., Bretheau, T., and Zaoui, A. (1987a), Sur une notion de “torseur de configuration” caractérisant les interactions élastiques entre inclusion et matrice, C. R. Acad. Sci. Paris, 304, II, 245–250.Google Scholar
  3. Ambroise, M. H., Bretheau, T., and Zaoui, A. (1987b), A note on configurational force and torque expressing the interaction between a superficial inhomogeneity and a matrix, Phil. Mag. Lett., 56, 7–11.ADSCrossRefGoogle Scholar
  4. Asaro, R. J. (1972), Forces on internal stress sources in terms of elastic chemical potentials, Script. Metall., 6, 547–550.CrossRefGoogle Scholar
  5. Attwood, D. G. and Hazzledine, P. M. (1976), A fiducial grid for high-resolution metallography, Metallography, 9, 483–501.CrossRefGoogle Scholar
  6. Bretheau, T. and Caldemaison, D. (1981), Test of mechanical interaction models between polycrystal grains by local strain measurements. Proceedings of the 2nd Risø International Symposium on Metallurgy and Materials Science, pp. 157–161.Google Scholar
  7. Bretheau, T. and Caldemaison, D. (1983), Study of inclusion-matrix interaction by means of local strain measurements. Proceedings 4th Rise International Symposium on Metallurgy and Materials Science, pp. 173–178.Google Scholar
  8. Bretheau, T., Caldemaison, D., and Ambroise, M. H. (1988), Inclusion/matrix mechanical interaction: an in situ study by tensile and fatigue tests in the S.E.M. Proceedings ICSMA 8, Tampere, Finland, pp. 1051–1056.Google Scholar
  9. Bui, H. D. (1978), Mécanique de la rupture fragile, Masson, Paris.Google Scholar
  10. Eshelby, J. D. (1951), The force on an elastic singularity, Phil. Trans., A244, 87–112. Eshelby, J. D. (1975), The elastic energy—momentum tensor, J. Elasticity, 5, 321–335.MathSciNetCrossRefGoogle Scholar
  11. Germain, P. (1986), Mécanique, Ti, Ellipses, Ecole Polytechnique, Paris.Google Scholar
  12. Hauser, J. J. and Wells, M. G. H. (1970), Inclusions in high strength and bearing steels. Air Force Materials Laboratory Technical Report, 69–339.Google Scholar
  13. Hill, R. (1986), Energy—momentum tensors in elastostatics: some reflexions on the general theory, J. Mech. Phys. Solids, 34, 305–317.MathSciNetADSMATHCrossRefGoogle Scholar
  14. Jablonski, D. A. (1981), The effect of ceramic inclusions on the low cycle fatigue life of low carbon Astroloy subjected to hot isostatic pressure, J. Mat. Sci. Engng., 48, 189–198.CrossRefGoogle Scholar
  15. Knowles, J. K. and Sternberg, E. (1972), On a class of conservation laws in linearized and finite elastostatics, Arch. Rat. Mech. Anal., 44, 187–211.MathSciNetMATHCrossRefGoogle Scholar
  16. Lankford, J. (1977a), Effect of oxide inclusions on fatigue fracture, Int. Met. Rev., Sept., 221–228.Google Scholar
  17. Lankford, J. (1977b), Initiation and early growth of fatigue cracks in high strength steel, Engng. Fracture Mech., 9, 617–624.CrossRefGoogle Scholar
  18. Law, C. C. and Blackburn, M. J. (1980), Effects of ceramic inclusions on fatigue properties of a powder metallurgical nickel-base superalloy. Proceedings of the International Powder Metallurgy Conference and Exhibition, Washington, Vol. 12–14. Google Scholar
  19. Mura, T. (1982), Micromechanics of Defects in Solids, Martinus Nihoff, the Hague. Mura, T. and Furuhashi, R. (1984), The elastic inclusion with a sliding interface, J. Appl. Mech., 51, 308–310.Google Scholar
  20. Seo, K. and Mura, T. (1979), The elastic field in a half-space due to ellipsoidal inclusions with uniform dilatational eigenstrains, J. Appl. Mech., 46, 568–572.ADSMATHCrossRefGoogle Scholar
  21. Thompson, F. A., Cutler, C. P., and Siddall, R. J. (1979), The influence of inclusions on the low cycle fatigue properties of the nickel-based superalloy APK1 produced via the powder-route. Henry Wiggin and Co. Ltd., Technical Report 3184.Google Scholar
  22. Tsuchida, E. and Mura, T. (1983), The stress-field in an elastic half-space having a spheroidal inhomogeneity under all-around tension parallel to the plane boundary, J. Appl. Mech., 50, 807–816.ADSMATHCrossRefGoogle Scholar

Additional References

  1. Lankford, J. (1976), Inclusion-matrix debonding and fatigue crack initiation in low alloy steel, Int. J. Fracture, 12, 155–157.Google Scholar
  2. Lankford, J. and Kusenberger, F. N. (1973), Initiation of fatigue cracks in 4340 steels, Met. Trans., 4, 553–559CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Marc-Henri Ambroise
    • 1
  • Thierry Bretheau
    • 1
  • André Zaoui
    • 1
  1. 1.Laboratoire PMTM, CNRSUniversité Paris-NordVilletaneuseFrance

Personalised recommendations