Skip to main content

Fractal Analysis of Human Retinal Blood Vessel Patterns: Developmental and Diagnostic Aspects

  • Chapter
Book cover Noninvasive Diagnostic Techniques in Ophthalmology

Abstract

The underlying unity of patterns in nature can be mathematically analyzed in terms of their scaling relations. This methodology is a sequel to the work of D’Arcy Thompson during the early 1900s.1 There are two terms, similar and self-similar, that are important to distinguish. A photograph of a face and its enlargement have the same shape and are called similar. However, a small portion of the photograph, e.g., the mouth, when magnified does not look like the original face in the photograph. The idea of similarity also exists in geometry. Two polygons are similar if there are areas of correspondence between their vertices such that the corresponding sides of the polygons are proportional and the corresponding angles are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Arcy Wentworth Thompson. On Growth and Form. Cambridge University Press, Cambridge, 1944.

    Google Scholar 

  2. Mandelbrot BB. The Fractal Geometry of Nature. Freeman, San Francisco, 1982.

    Google Scholar 

  3. Richardson LF. The problem of contiguity: an appendix of statistics of deadly quarrels. Gen Sys Yearbook 1961;6:139–187.

    Google Scholar 

  4. Vicsek T. Fractal Growth Phenomena. World Scientific, Singapore, 1989.

    Google Scholar 

  5. Feder J. Fractals. Plenum Press, New York, 1988.

    Google Scholar 

  6. Evertsz CG. Laplacian Fractals. CheesePress, Edam, The Netherlands.

    Google Scholar 

  7. Meakin P. A new model for biological pattern formation. J Theor Biol 1986;118:101–113.

    Article  PubMed  CAS  Google Scholar 

  8. Meakin P. Fractal aggregates and their fractal measures. In Domb C, Lebowitz JL (eds): Phase Transitions and Critical Phenomena. Academic Press, New York, 1987, pp. 335–488.

    Google Scholar 

  9. Sander LM. Fractal growth. Sci Am 1987; 256:94–100.

    Article  Google Scholar 

  10. Witten TA, Sander LM. Diffusion-limited aggregation, a kinetic critical phenomena. Phys Rev Lett 1981;47:1400.

    Article  CAS  Google Scholar 

  11. Meakin P. Fractal aggregates. Sci Form 1988; 3:3–11.

    Google Scholar 

  12. Wiesman HJ, Pietronero L. Properties of Laplacian fractals for dielectric breakdown in 2 and 3 dimensions. In: Pietronero L, Tosatti E (eds): Fractals in Physics. Elsevier, Amsferdam, 1986, pp. 151–158.

    Google Scholar 

  13. Family F. Growth by gradients: fractal growth and pattern formation in a Laplacian field. In Landau DP, Mon KK, Schüttler H-B (eds): Springer Proceedings in Physic. Vol. 33. Computer Simulation Studies in Condensed Matter Physics. Springer-Verlag Berlin, 1988, pp. 65–75.

    Google Scholar 

  14. West BJ, Bhargava V, Goldberger AL. Beyond the principle of similitude: renormalization in the bronchial tree. J Appl Physiol 1986;60:189–197.

    Article  Google Scholar 

  15. West BJ, Goldberger AL. Physiology in fractal dimensions. Am Sci 1987;75:354–365.

    Google Scholar 

  16. Meakin P. Diffusion-controlled cluster formna-tion in 2–6 dimensional space. Phys Rev 1986; A27:1495–1507.

    Google Scholar 

  17. Goldberger AL, Bhargava V, West BJ, Mandell A J. On a mechanism of cardiac electrical stability: the fractal hypothesis. Biophys J 1985;48: 525–528.

    Article  PubMed  CAS  Google Scholar 

  18. Morse DR, Lawton JH, Dodson MM, Williamson MH. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 1985;314:731–733.

    Article  Google Scholar 

  19. Tsonis AA, Tsonis PA. Fractals: an new look at biological shape and patterning. Perspect Bio Med 1987;30:355–361.

    CAS  Google Scholar 

  20. Bassingthwaighte JB. Physiological heterogeneity: fractals link determinism and randomness in structures and functions. News Physiol Sci 1988;3:5–10.

    PubMed  Google Scholar 

  21. Stanley HE. Physical mechanisms underlying neurite outgrowth: a quantitative analysis of neuronal shape. Bull Am Phy Soc 1989;34:716 (abstract).

    Google Scholar 

  22. Majmudar S, Prasad RR: The fractal dimension of cerebral surfaces using magnetic resonance images. Comput Phys 1988;Nov/Dec: 69–73.

    Google Scholar 

  23. Stapleton HJ, Allen JP, Flynn CP, et al. Fractal form of proteins. Phys Rev Lett 1980;45:1456–1459.

    Article  CAS  Google Scholar 

  24. Smith TG, Marks WB, Lange GD, et al. A fractal analysis of cell images. J Neurosci Meth 1989:27:173–180.

    Article  Google Scholar 

  25. Masters BR, Family F, Platt DE. Fractal analysis of human retinal vessels. Biophys J 1989;55 (suppl):575a. (Abstract).

    Article  Google Scholar 

  26. Masters BR, Platt DE. Development of human retinal vessels: a fractal analysis. Invest Ophthalmol Vis Sei 1989;30(suppl): 391. (Abstract).

    Google Scholar 

  27. Kretzer FL, Hittner HM. Retinopathy of prematurity: clinical implications of retinal development. Arch Dis Child 1988;63:1151–1167.

    Article  PubMed  CAS  Google Scholar 

  28. Kretzer FL, Hittner HM. Initiating events in the development of retinopathy of prematurity. In Silverman WA, Flynn JT (eds): Retinopathy of Prematurity. Blackwell Scientific Publications, Oxford, 1985.

    Google Scholar 

  29. Kretzer FL, Hittner HM. Spindle cells and retinopathy of prematurity: interpretation and predictions. In Flynn JT, Phelps DL (eds): Retinopathy of Prematurity: Problem and Challenge. March of Dimes Birth Defects Foundation, New York, 1988, pp. 147–168.

    Google Scholar 

  30. Kretzer FL, McPherson AR, Hittner HM. An interpretation of retinopathy of prematurity in terms of spindle cells: relationship to vitamin E prophylaxis and cryotherapy. Graefes Arch Clin Exp Ophthalmol 1986;224:205–214.

    Article  PubMed  CAS  Google Scholar 

  31. Kretzer FL, Mehta RS, Johnson AT, et al. Vitamin E protects against retinopathy of prematurity through action on spindle cells. Nature 1984;309:793–795.

    Article  PubMed  CAS  Google Scholar 

  32. Folkman J. The vascularization of tumors. Sci Am 1976;234(5): 58–73.

    Article  PubMed  CAS  Google Scholar 

  33. Folkman J, Haudenschild C. Angiogenesis in vitro. Nature 1980;288:551–556.

    Article  PubMed  CAS  Google Scholar 

  34. Weitz DA, Oliveria M. Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys Rev Lett 1984;52:1433.

    Article  CAS  Google Scholar 

  35. Ben Sira I, Nissenkorn I, Kremer I. Retinopathy of prematurity. Surv Ophthalmol 1988; 33:1–16.

    Article  PubMed  Google Scholar 

  36. Sherman TF, Popel AS, Koller A, Johnson PC. The cost of departure from optimal radii in microvascular networks. J Theor Biol 1989; 136:245–265.

    Article  PubMed  CAS  Google Scholar 

  37. Mayrovitz HN, Roy J. Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter. Am J Physiol 1983;245: H1031.

    PubMed  CAS  Google Scholar 

  38. Ryan S. The Retina. Vols. 1 and 2. Mosby, St. Louis, 1989.

    Google Scholar 

  39. Peitgen H-O, Richter P. The Beauty of Fractals. Springer-Verlag, New York, 1986.

    Book  Google Scholar 

  40. Peitgen H-O, Saupe D. The Science of Fractal Images. Springer-Verlag, New York, 1988.

    Google Scholar 

  41. Barnsley M. Fractals Everywhere. Academic Press, New York, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Masters, B.R. (1990). Fractal Analysis of Human Retinal Blood Vessel Patterns: Developmental and Diagnostic Aspects. In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics