Skip to main content

Measurement of Retina and Optic Nerve Oxidative Metabolism in Vivo via Dual Wavelength Reflection Spectrophotometry of Cytochrome a, a 3

  • Chapter

Abstract

The energy metabolism of the retina and optic nerve is maintained in a steady state, utilizing and producing free energy. This energy is mainly derived from glycolysis, the tricarboxylic acid (i.e., Kreb’s) cycle, and the mitochondrial oxidative phosphorylation pathway (i.e., respiratory chain). Each step is carefully controlled, ranging from blood flow autoregula-tion (which adjusts the supply of glucose and oxygen to the cell) to the rate of electron flow in the oxidative phosphorylation pathway, which is coupled to the production of adenosine triphosphate (ATP). Various techniques have been employed to monitor retinal and optic nerve energy metabolism in vivo and in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graymore CN. General aspects of the metabolism of the retina. In Davson H (ed): The Eye. Academic Press, London, 1969, pp. 601–645.

    Google Scholar 

  2. Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study withradioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 1973;15:15–29.

    Article  PubMed  CAS  Google Scholar 

  3. Stefânsson E, Wagner HG, Seida M. Retinal blood flow and its autoregulation measured by intraocular hydrogen clearance. Exp Eye Res 1988;47:669–678.

    Article  PubMed  Google Scholar 

  4. Sossi N, Anderson DR. Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoanti-pyrine.125 I Arch Ophthalmol 1983;101:98–101.

    CAS  Google Scholar 

  5. Feke GT, Tagawa H, Deupree DM, et al. Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 1989;30:58–65.

    PubMed  CAS  Google Scholar 

  6. Gloster J. Fundus oximetry. Exp Eye Res 1967; 6:187–212.

    Article  PubMed  CAS  Google Scholar 

  7. Stefânsson E, Landers MB, Wolbarsht ML. Increased retinal oxygen supply following panretinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc 1981; 79:307–334.

    PubMed  Google Scholar 

  8. Jöbsis FF, Keizer JH, LaManna JC, et al. Reflectance spectrophotometry of cytochrome a, a3 in vivo. J Appl Physiol 1977;43:5:858–872.

    PubMed  Google Scholar 

  9. Novack RL, Farber DB. Microfiber, dual wavelength, reflection spectrophotometry of cytochrome oxidase from retina in situ. Invest Ophthalmol Vis Sci 1987;28:3 (suppl): 249.

    Google Scholar 

  10. Novack, RL, Stefânsson E, Hatchell DL. Optic nerve head oxidative metabolism measurements in vivo: Effects of intraocular pressure variation. Invest Ophthalmol Vis Sci 1988;29 (suppl): 20.

    Google Scholar 

  11. Chance B. Spectrophotometric measurements of the cytochrome components of the succinic oxidase system. Fed Proc 1951; 10:171.

    Google Scholar 

  12. Chance B. Rapid and sensitive spectrophotometry. I. The accelerated and stopped-flow methods for the measurement of the reaction kinetics and spectra of unstable compounds in the visible region of the spectrum. Rev Sci Instr 1951;22:619–627.

    Article  CAS  Google Scholar 

  13. Chance B, Cohen P, Jöbsis FF, et al. Intracellular oxidation-reduction in vivo. Science 1962; 137:499–508.

    Article  PubMed  CAS  Google Scholar 

  14. Chance, B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzymol 1956;17:65–134.

    CAS  Google Scholar 

  15. Chance B, Rapid and sensitive spectrophotometry. III. A double beam apparatus. Rev Sci Instr 1951;22:636–638.

    Google Scholar 

  16. Keilin D. On cytochrome, a respiratory pigment common to animals, yeast, and higher plants. Proc Rl Soc Lond 1925;B98:312–339.

    Article  Google Scholar 

  17. Keilin D. The History of Cell Respiration and Cytochrome. Cambridge University Press, Cambridge, 1966, p. 416.

    Google Scholar 

  18. Duckrow RB, LaManna JC, Rosenthal M. Sensitive and inexpensive dual-wavelength reflection spectrophotometry using interference filters. Anal Biochem 1982;125:13–23.

    Article  PubMed  CAS  Google Scholar 

  19. Rosenthal M, LaManna JC, Yamada S, et al. Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ. Brain Res 1979;162:113–127.

    Article  PubMed  CAS  Google Scholar 

  20. Marks WB, Dobell WH, MacNichol EF Jr. Visual pigments of single primate cones. Science 1964;143:1181–1183.

    Article  PubMed  CAS  Google Scholar 

  21. Brown PK, Wald G. Visual pigments in single rods and cones of the human retina. Science 1964;144:45–52.

    Article  PubMed  CAS  Google Scholar 

  22. Lanum J. The damaging effects of light on the retina: empirical findings, theoretical and practical implications. Surv Ophthalmol 1978;22: 221–249.

    Article  PubMed  CAS  Google Scholar 

  23. Lerman S. Photochemical damage. In: Radiant Energy and the Eye. Macmillan, New York, 1980, pp. 203–211.

    Google Scholar 

  24. Noell WK, Walker VA, Kang BS, Berman S. Retinal damage by light in rats. Invest Ophthalmol Vis Sci 1966;5:450–473.

    CAS  Google Scholar 

  25. Rinkoff J, Machemer R, Hida T, Chandler D. Temperature dependent light damage to the retina. Am J Ophthalmol 1986;102:452–462.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Novack, R.L., Stefánsson, E. (1990). Measurement of Retina and Optic Nerve Oxidative Metabolism in Vivo via Dual Wavelength Reflection Spectrophotometry of Cytochrome a, a 3 . In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics