Skip to main content

Retinal Blood Flow: Laser Doppler Velocimetry and Blue Field Simulation Technique

  • Chapter

Abstract

The measurement of retinal blood flow is of scientific as well as practical clinical interest. Its scientific value lies in the possibility of gaining insight into the physiology of a deep vascular bed that is under local control and possibly under central nervous control as well.1 Its clinical potential lies in the early assessment of alterations of blood flow, whether associated with specific ocular diseases or resulting from systemic ailments. Clinically important also is the evaluation of the effect of treatment on the disturbed retinal blood flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furukawa H. Autonomic innervation of pre-retinal blood vessels of the rabbit. Invest Ophthalmol Vis Sci 1987;28:1752–1760.

    PubMed  CAS  Google Scholar 

  2. Bulpitt CJ, Kohner EM, Dollery CT. Velocity profile in the retinal microcirculation. Bibl Anat 1973;11:448–452.

    PubMed  CAS  Google Scholar 

  3. Schulte AVM, Van Rens GH. Retinal fluoro-tachometry: dynamic fluorescein angiography. In Ben Ezra D, Ryan SJ, Glaser BM, Murphy RP (eds): Ocular Circulation and Neovascularization. Documenta Ophthalmologica Proceedings Series 50. Martinus Nijhoff, Dordrecht, 1987, pp. 11–22.

    Google Scholar 

  4. Hickam JB, Frayser R. A photographic method for measuring the mean retinal circulation time using fluorescein. Invest Ophthalmol 1965;4: 876–884.

    PubMed  CAS  Google Scholar 

  5. Riva CE, Feke GT, Ben-Sira I. Fluorescein dye dilution technique and retinal circulation. Am J Physiol 1978;234:H315-H322.

    PubMed  CAS  Google Scholar 

  6. Van Heuven WAJ, Malik AB, Schaffer CA, et al. Retinal blood flow derived from dye dilution curves. Arch Ophthalmol 1977;95:297–301.

    PubMed  Google Scholar 

  7. Fonda S, Bagolini B. Relative photometric measurements of retinal circulation (dro-mofluorograms). Arch Ophthalmol 1977;95: 302–307.

    PubMed  CAS  Google Scholar 

  8. Bulpitt CJ, Dollery CT. Estimation of retinal blood flow by measurement of the mean circulation time. Cardiovasc Res 1971;5:406–412.

    Article  PubMed  CAS  Google Scholar 

  9. Oberoff P, Evans PY, Delaney JF. Cinematographic documentation of retinal circulation times. Arch Ophthalmol 1965;74:77–80.

    Google Scholar 

  10. Riva CE, Feke GT. Laser Doppler velocimetry in the measurement of retinal blood flow. In Goldman L (ed): The Biomedical Laser: Technology and Clinical Applications. Springer Verlag, New York, 1981, pp. 135–161.

    Google Scholar 

  11. Fercher AF, Peukert M. Retinal blood flow visualization and measurement by means of laser speckle photography. SPIE Proc 1985;556: 110–115.

    Google Scholar 

  12. Fercher AF, Briers JD. Flow visualization by means of single-exposure speckle photography. Optics Commun 1981;37:326–330.

    Article  Google Scholar 

  13. Hoffman DH, Podestá HH. Zur Messung der Strömungsgeschwindigkeit in kleinsten Netz-hautgefässen. In Weigelin E (ed): Acta, XX Concilium Ophthalmologicum Germania, 1966. Excerpta Medica, Amsterdam, 1966, pp. 162–164.

    Google Scholar 

  14. Riva CE, Petrig BL. Blue field entoptic phenomenon and blood velocity in the retinal capillaries. J Opt Soc Am 1980;70:1234–1238.

    Article  PubMed  CAS  Google Scholar 

  15. Riva CE, Ross B, Benedek GB. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol Vis Sci 1972;11:936–944.

    CAS  Google Scholar 

  16. Fluckiger DU, Keyes JT, Shapiro JH. Optical autodyne detection: theory and experiment. Appl Opt 1987;26:318–325.

    Article  PubMed  CAS  Google Scholar 

  17. Feke GT, Riva CE. Laser Doppler measurement of blood velocity in human retinal vessels. J Opt Soc Am 1978;68:526–531.

    Article  PubMed  CAS  Google Scholar 

  18. Riva CE, Feke GT, Eberli B, et al. Bidirectional LDV system for absolute measurement of retinal blood speed. Appl Opt 1979;18: 2302–2306.

    Google Scholar 

  19. Feke GT, Goger DG, Tagawa H, et al. Laser Doppler technique for absolute measurement of blood speed in retinal vessels. IEEE Trans Biomed Eng 1987;BME-34:673–680.

    Article  Google Scholar 

  20. Riva CE, Grunwald JE, Sinclair SH, et al. Fundus camera based retinal laser Doppler veloci-meter. Appl Opt 1981;20:117–120.

    Article  PubMed  CAS  Google Scholar 

  21. Riva CE, Grunwald JE, Petrig BL. Laser Doppler measurement of retinal blood velocity: validity of the single scattering model. Appl Opt 1985;24:605–607.

    Article  PubMed  CAS  Google Scholar 

  22. Petrig BL, Riva CE, Grunwald JE. Computer analysis of laser Doppler measurements in retinal vessels. Invest Ophthalmol Vis Sci 1984;25(suppl):7.

    Google Scholar 

  23. Petrig BL, Riva CE. Retinal laser Doppler velo-cimetry: towards its computer-assisted clinical application. Appl Opt 1988;27:1126–1134.

    Article  PubMed  CAS  Google Scholar 

  24. Bonner R, Nossal R. Model for laser Doppler measurements of blood flow in tissue. Appl Opt 1981;20:2097–2107.

    Article  PubMed  CAS  Google Scholar 

  25. Stern MD. Laser Doppler velocimetry in blood and multiply scattering fluids: theory. Appl Opt 1985;24:1968–1986.

    Article  PubMed  CAS  Google Scholar 

  26. Riva CE, Pournaras CJ, Shonat R, et al. Feasibility of laser Doppler velocimetry in cats and effect of hyperoxia on retinal blood flow. Invest Ophthalmol Vis Sci 1988;29(suppl):339.

    Google Scholar 

  27. Baker M, Wayland H. On-line volume flow rate and velocity profile measurement for blood in microvessels. Microvasc Res 1974;15:131–143.

    Article  Google Scholar 

  28. Pittman RN, Ellsworth ML. Estimation of red cell flow in microvessels: consequences of the Baker-Wayland spatial averaging model. Microvasc Res 1986;32:371–388.

    Article  PubMed  CAS  Google Scholar 

  29. Charm SE, Kurland GS. Blood Flow and Microcirculation. Wiley, New York, 1974, pp. 72–87.

    Google Scholar 

  30. Riva CE, Grunwald JE, Sinclair SH, et al. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 1985;26:1124–1132.

    PubMed  CAS  Google Scholar 

  31. Murray CD. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 1926;12:207–214.

    Article  PubMed  CAS  Google Scholar 

  32. Sherman TF. On connecting large vessels to small: the meaning of Murray’s law. J Gen Physiol 1981;78:431–453.

    Article  PubMed  CAS  Google Scholar 

  33. Mayrovitz HN, Roy J. Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter. Am J Physiol 1983;245 (Heart Circ Physiol 14):H103–H1038.

    Google Scholar 

  34. Robinson F, Riva CE, Grunwald JE, et al. Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 1986;27:722–726.

    PubMed  CAS  Google Scholar 

  35. Riva CE, Grunwald JE, Petrig BL. Autoregulation of human retinal blood flow: an investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 1986;27:1706–1712.

    PubMed  CAS  Google Scholar 

  36. Riva CE, Grunwald JE, Sinclair SH. Laser Doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 1983;24:47–51.

    PubMed  CAS  Google Scholar 

  37. Riva CE, Pournaras CJ, Tsacopoulos M. Regulation of local oxygen tension and blood flow in the inner retina during hyperoxia. J Appl Physiol 1986;61:592–598.

    PubMed  CAS  Google Scholar 

  38. Pournaras CJ, Riva CE, Strommer K, et al. O2 gradients in the miniature pig retina in normox-ia and hyperoxia. In BenEzra D, Ryan SJ, Glaser BM, Murphy RP (eds): Ocular Circulation and Neovascularization. Documenta Ophthal-mologica Proceedings Series 50. Martinus Nijhoff, Dordrecht, 1987, pp. 31–35.

    Google Scholar 

  39. Feke GT, Zuckerman R, Green GT, et al. Response of human retinal blood flow to light and dark. Invest Ophthalmol Vis Sci 1983;24:136–141.

    PubMed  CAS  Google Scholar 

  40. Riva CE, Grunwald JE, Petrig BL. Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study. Invest Ophthalmol Vis Sci 1983;24:737–740.

    PubMed  CAS  Google Scholar 

  41. Riva CE, Petrig BL, Grunwald JE. Near infrared retinal laser Doppler velocimetry, Lasers Ophthalmol 1987;1:211–215.

    Google Scholar 

  42. Grunwald JE, Riva CE, Sinclair SH, et al. Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. Arch Ophthalmol 1986;104:991–996.

    PubMed  CAS  Google Scholar 

  43. Grunwald JE, Riva CE, Brucker AJ, et al. Effect of panretinal photocoagulation on retinal blood flow in proliferative diabetic retinopathy. Ophthalmology 1986;93:590–595.

    PubMed  CAS  Google Scholar 

  44. Feke GT, Tagawa H, Yoshida A, et al. Retinal circulatory changes related to retinopathy progression in insulin-dependent diabetes mellitus. Ophthalmology 1985;92:1517–1522.

    PubMed  CAS  Google Scholar 

  45. Grunwald JE, Riva CE, Brucker AJ, et al. Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. Ophthalmology 1984;91:1447–1452.

    PubMed  CAS  Google Scholar 

  46. Feke GT, Green JG, Goger DG, et al. Laser Doppler measurements of the effect of panretinal photocoagulation on retinal blood flow. Ophthalmology 1982;89:757–762.

    PubMed  CAS  Google Scholar 

  47. Grunwald JE, Riva CE, Martin DB, et al. Effect of an insulin-induced decrease in blood glucose on the human diabetic retinal circulation. Ophthalmology 1987;94:1614–1620.

    PubMed  CAS  Google Scholar 

  48. Yoshida A, Feke GT, Green JG, et al. Retinal circulatory changes after scleral buckling procedures. Am J Ophthalmol 1983;95:182–188.

    Article  PubMed  CAS  Google Scholar 

  49. Green JG, Feke GT, Goger DG, et al. Clinical application of the laser Doppler technique for retinal blood flow studies. Arch Ophthalmol 1983;101:971–974.

    PubMed  CAS  Google Scholar 

  50. Grunwald JE. Effect of topical timolol on the human retinal circulation. Invest Ophthalmol Vis Sci 1986;27:1713–1719.

    PubMed  CAS  Google Scholar 

  51. Delori FC, Parker JS, Mainster MA. Light levels of fundus photography and fluorescein angiography. Vis Res 1980;20:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  52. Milbocker MT, Feke GT, Goger DG. Automated determination of centerline blood speed in retinal vessels from laser Doppler spectra. In: Noninvasive Assessment of the Visual System. 1988 Technical Digest Series, Vol. 3. Optical Society of America, Washington, DC, 1988, pp. 162–165.

    Google Scholar 

  53. Vierordt K. Grundriss der Physiologic Meidinger, Frankfurt, 1862.

    Google Scholar 

  54. Friedman E, Smith TR, Kuwabara T. Retinal microcirculation in vivo. Invest Ophthalmol Vis Sci 1964;3:217–226.

    CAS  Google Scholar 

  55. Schmid-Schonbein GW, Skalak R, Usami S, et al. Cell distribution in capillary networks. Microvasc Res 1980;19:18–44.

    Article  PubMed  CAS  Google Scholar 

  56. Wyatt HJ. Purkinje’s methods for visualizing the internal retinal circulation: a look at the source. Vis Res 1978;18:875–877.

    Article  PubMed  CAS  Google Scholar 

  57. Petrig BL, Riva CE. Macular capillary leukocyte velocity measurement using a low cost, microcomputer based blue field simulation system. Invest Ophthalmol Vis Sci 1987;28 (suppl):111.

    Google Scholar 

  58. Robinson F, Petrig BL, Riva CE. The acute effect of cigarette smoking on macular capillary blood flow in humans. Invest Ophthalmol Vis Sci 1985;26:609–613.

    PubMed  CAS  Google Scholar 

  59. McKee SP, Silverman GH, Nakayama K. Precise velocity discrimination despite random variations in temporal frequency and contrast. Vis Res 1986;26:609–619.

    Article  PubMed  CAS  Google Scholar 

  60. Riva CE, Zuckerman R, Petrig BL, et al. Noninvasive assessment of retinal macular capillary blood flow regulation. In: Noninvasive Assessment of the Visual System Technical Digest 87–4. Optical Society of America, Washington, DC, 1987, pp. 152–155.

    Google Scholar 

  61. Petrig BL, Riva CE, Sinclair SH, et al. Quantification of changes in leukocyte velocity in retinal macular capillaries during oxygen breathing. Invest Ophthalmol Vis Sci 1982;22 (suppl): 194.

    Google Scholar 

  62. Fallon TJ, Maxwell D, Kohner EM. Retinal vascular autoregulation in conditions of hyper-oxia and hypoxia using the blue field entoptic phenomenon. Ophthalmology 1985;92:701–705.

    PubMed  CAS  Google Scholar 

  63. Petrig BL, Riva CE, Grunwald JE, et al. Effect of graded oxygen breathing on macular capillary leukocyte velocity. Invest Ophthalmol Vis Sci 1986;27(suppl):221.

    Google Scholar 

  64. Petrig BL, Grunwald JE, Baine J, et al. Changes in macular capillary leukocyte velocity and segmental retinal blood flow during normo-xic hypercapnia. Invest Ophthalmol Vis Sci 1985;26(suppl):245.

    Google Scholar 

  65. Riva CE, Sinclair SH, Grunwald JE. Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 1981;21:34–38.

    PubMed  CAS  Google Scholar 

  66. Petrig BL, Werner EB, Riva CE, et al. Response of macular capillary blood flow to changes in intraocular pressure as measured by the blue field simulation technique. In Heijl A., Greve EL (eds): Proceedings of the 6th International Visual Field Symposium. Junk, Dordrecht, 1985, pp. 447–451.

    Chapter  Google Scholar 

  67. Robinson F, Petrig BL, Sinclair SH, et al. Does topical phenylephrine, tropicamide, or propara-caine affect macular blood flow? Ophthalmology 1985;92:1130–1132.

    PubMed  CAS  Google Scholar 

  68. Fallon TJ, Chowiencyzk P, Kohner EM. Measurement of retinal blood flow in diabetes by the blue-light entoptic phenomenon. Br J Ophthalmol 1986;70:43–46.

    Article  PubMed  CAS  Google Scholar 

  69. Fallon TJ, Sleightholm MA, Merrick C, et al. The effect of acute hyperglycemia on flow velocity in the macular capillaries. Invest Ophthalmol Vis Sci 1987;28:1027–1030.

    PubMed  CAS  Google Scholar 

  70. Grunwald JE, Riva CE, Stone RA, et al. Retinal autoregulation in open angle glaucoma. Ophthalmology 1984;91:1690–1694.

    PubMed  CAS  Google Scholar 

  71. Sinclair SH, Grunwald JE, Riva CE, et al. Retinal vascular autoregulation in diabetes mellitus. Ophthalmology 1982;89:748–750.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Riva, C.E., Petrig, B.L. (1990). Retinal Blood Flow: Laser Doppler Velocimetry and Blue Field Simulation Technique. In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics