Skip to main content

Assessment of Posterior Segment Transport by Vitreous Fluorophotometry

  • Chapter
Noninvasive Diagnostic Techniques in Ophthalmology
  • 349 Accesses

Abstract

The intraocular structures and fluids are separated from the blood by two barriers: the blood-aqueous barrier and the blood-retina barrier.1 The blood-aqueous barrier regulates the exchange between the blood and the aqueous humor and is dominated by an inward movement. The blood-retina barrier, responsible for the microenvironment of the retina, is divided into two components: an inner barrier and an outer barrier. The inner barrier is constituted by the cells in the walls of the retinal vessels that behave like a “nonleaky” epithelium. The outer barrier is located mainly in the retinal pigment epithelium, where the cells are united by junctional structures that firmly close the intercellular spaces, establishing an efficient barrier to diffusional movement and thus forcing transport through the highly selective transcellular route. There are indications that some of this transport is active.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cunha-Vaz JG. Vitreous fluorophotometry. In Osborne NN, Chader GJ (eds): Progress in Retinal Research. Pergamon Press, Oxford, 1985, pp. 90–114.

    Google Scholar 

  2. Cunha-Vaz JG, Maurice DM. The active transport of fluorescein by the retinal vessels and retina. J Physiol (Lond) 1967;191:467–486.

    CAS  Google Scholar 

  3. Kaiser RJ, Maurice DM. The diffusion of fluorescein in the lens. Exp Eye Res 1964; 3:156–165.

    PubMed  CAS  Google Scholar 

  4. Cunha-Vaz J, Faria de Abreu JR, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 1975;59:649–656.

    PubMed  CAS  Google Scholar 

  5. Waltman SR, Oestrich C, Krupin T, et al. Quantitative vitreous fluorophotometry: a sensitive technique for measuring early breakdown of the blood-retinal barrier in young diabetic patients. Diabetes 1978;27:85–87.

    PubMed  CAS  Google Scholar 

  6. Klein R, Ernest JT, Engerman RL. Fluorophotometry. I. Technique. Arch Ophthalmol 1980;98:2231–2232.

    PubMed  CAS  Google Scholar 

  7. Prager TC, Wilson DJ, Avery GD, et al. Vitreous fluorophotometry: identification of sources of variability. Invest Ophthalmol Vis Sci 1981;21:854–864.

    PubMed  CAS  Google Scholar 

  8. Prager TC, Chu HH, Garcia CA, Anderson RE. The influence of vitreous change on vitreous fluorophotometry. Arch Ophthalmol 1982;100:594–596.

    PubMed  CAS  Google Scholar 

  9. Zeimer RC, Cunha-Vaz JG. Evaluation and comparison of commercial vitreous fluoropho-tometry. Invest Ophthalmol Vis Sci 1981; 21:865–868.

    PubMed  CAS  Google Scholar 

  10. Zeimer RC, Cunha-Vaz JG, Johnson ME. Studies on the technique of vitreous fluoro-photometry. Invest Ophthalmol Vis Sci 1982; 22:668–674.

    PubMed  CAS  Google Scholar 

  11. Bursell SE, Delori FC, Yoshida A. Instrument characterization for vitreous fluoropho-tometry. Curr Eye Res 1981;1:711–716.

    PubMed  Google Scholar 

  12. Munnerlyn CR, Gray JR, Hennings DR. Design considerations for a fluorophotometer for ocular research. Graefes Arch Clin Exp Ophthalmol 1985;222:209–211.

    PubMed  CAS  Google Scholar 

  13. Zeimer RC, Blair NP, Cunha-Vaz JG. Vitreous fluorophotometry for clinical research. I. Description and evaluation of a new fluorophotometer. Arch Ophthalmol 1983; 101:1753–1756.

    PubMed  CAS  Google Scholar 

  14. Conway BP. An analysis of vitreous fluorophotometry. In Ryan SI, Dawson AK, Little HL (eds): Retinal Diseases. Grune & Stratton, Orlando, 1985, pp. 59–66.

    Google Scholar 

  15. Waltman SR, Kaufman HE. A new objective slit fluorophotometer. Invest Ophthalmol 1970;9:247–249.

    PubMed  CAS  Google Scholar 

  16. Krogsaa B, Fledelius H, Larsen J, Lund-Andersen H. Photometric oculometry. I. An analysis of the optical principles in slit-lamp fluorophotometry. Acta Ophthalmol (Copenh) 1984;62:274–289.

    CAS  Google Scholar 

  17. Clarici J, Trevino Cavazos E, Gartner J. Vitreous body fluorophotometry following oral administration of dye. I. New version of a vitreous body fluorophotometer. Klin Monatsbl Augenheilkd 1983;183:511–514.

    PubMed  CAS  Google Scholar 

  18. Kayazawa F. Ocular fluorophotometry using high S-N ratio fluorophotometer. Ann Ophthalmol 1984;16:472–476.

    PubMed  CAS  Google Scholar 

  19. Conway BP. Technical variables in vitreous fluorophotometry. Graefes Arch Clin Exp Ophthalmol 1985;222:194–201.

    PubMed  CAS  Google Scholar 

  20. Cunha-Vaz JG, Fonseca JR, Abreu JF, Ruas MA. Detection of early retinal changes in diabetes by vitreous fluorophotometry. Diabetes 1979;28:16–19.

    PubMed  CAS  Google Scholar 

  21. Palestine AG, Brubaker RF. Pharmacokinetics of fluorescein in the vitreous. Invest Ophthalmol Vis Sci 1981;21:542–549.

    PubMed  CAS  Google Scholar 

  22. Zeimer RC, Blair NP, Cunha-Vaz JG. Pharmacokinetic interpretation of vitreous fluorophotometry. Invest Ophthalmol Vis Sci 1983;24:1374–1381.

    PubMed  CAS  Google Scholar 

  23. Larsen J, Lund-Andersen H, Krogsaa B. Transient transport across the blood-retina barrier. Bull Math Biol 1983;45:749–758.

    PubMed  CAS  Google Scholar 

  24. Crank J. The Mathematics of Diffusion. Clarendon Press, Oxford, 1975.

    Google Scholar 

  25. Ogura Y, Tsukahara Y, Saito I, Kondo T. Estimation of the permeability of the blood-retinal barrier in normal individuals. Invest Ophthalmol Vis Sci 1985;26:969–976.

    Google Scholar 

  26. Kjaergaard JJ, Fabrin K. Some methodological problems in ocular fluorophotometry. Int J Microcirc Clin Exp 1983;2:177–189.

    PubMed  CAS  Google Scholar 

  27. Gray JR, Mosier MA, Ishimoto BM. Optimized protocol for Fluorotron Master. Graefes Arch Clin Exp Ophthalmol 1985;222:225–229.

    PubMed  CAS  Google Scholar 

  28. American National Standards Institute: Safe Use of Lasers, ANSI Z-136.1. ANSI, New York, 1986.

    Google Scholar 

  29. Delori FC, Ben-Sira I. Excitation and emission spectra of fluorescein dye in the human ocular fundus. Invest Ophthalmol 1973,14: 2487–492.

    Google Scholar 

  30. Zeimer RC, Blair NP, Cunha-Vaz JG. Vitreous fluorophotometry for clinical research. II. Methodology of data acquisition and processing. Arch Ophthalmol 1983;101:1757–1761.

    PubMed  CAS  Google Scholar 

  31. Travassos A, Fishman G, Cunha-Vaz JG. Vitreous fluorophotometry studies in retinitis pigmentosa. Grafes Arch Clin Exp Ophthalmol 1985;222:237–240.

    CAS  Google Scholar 

  32. Delori FC, Bursell SE, Yoshida A, McMeel JW. Vitreous fluorophotometry in diabetics: study of artifactual contributions. Graefes Arch Clin Exp Ophthalmol 1985,222:215–218.

    PubMed  CAS  Google Scholar 

  33. Van Best JA, Oosterhuis JA. Computer fluorophotometry. Doc Ophthalmol 1983;56: 89–97.

    PubMed  Google Scholar 

  34. Smith RT, Koester CJ, Campbell CJ. Vitreous fluorophotometer data analysis by deconvolu-tion. Invest Ophthalmol Vis Sci 1986;27:406–414.

    PubMed  CAS  Google Scholar 

  35. Zeimer RC, Noth JM. A new method of measuring in vivo the lens transmittance and study of lens scatter, fluorescence, and transmittance. Ophthalmic Res 1984;16:246–255.

    PubMed  CAS  Google Scholar 

  36. Jacobs R, Krohn DL. Fluorescence intensity profile of human lens sections. Invest Ophthalmol Vis Sci 1981;20:117–120.

    PubMed  CAS  Google Scholar 

  37. Zeimer RC, Lim HK, Ogura Y. Evaluation of an objective method for the in vivo measurement of changes in light transmittance of the human crystalline lens. Exp Eye Res 1987; 45:969–976.

    PubMed  CAS  Google Scholar 

  38. Bleeker JC, van Best JA, Vrij L, et al. Auto-fluorescence of the lens in diabetic and healthy subjects by fluorophotometry. Invest Ophthalmol Vis Sci 1986;27:791–794.

    PubMed  CAS  Google Scholar 

  39. Mosier MA, Occhipinti JR, Burstein NL. Autofluorescence of the crystalline lens in diabetes. Arch Ophthalmol 1986;104:1340–1343.

    PubMed  CAS  Google Scholar 

  40. Van Best JA, Vrij L, Oosterhuis JA. Lens transmission of blue-green light in diabetic patients as measured by autofluorophotometry. Invest Ophthalmol Vis Sci 1985;26:532–536.

    PubMed  Google Scholar 

  41. Yoshida A, Furukawa H, Delori FC, et al. Effect of vitreous detachment on vitreous fluorophotometry. Arch Ophthalmol 1984;102: 857–860.

    PubMed  Google Scholar 

  42. Nishimura Y, Hayashi H, Ikui A, et al. Vitreous fluorophotometry in vitrectomized eyes. Folia Ophthalmol Jpn 1984;35:1450–1454.

    Google Scholar 

  43. Brubaker RF. Measurement with fluorophotometry. I. Plasma binding. II. Anterior segment. III. Aqueous humor flow. Graefes Arch Clin Exp Ophthalmol 1985;222:190–193.

    PubMed  CAS  Google Scholar 

  44. Araie M, Sawa M, Nagataki S, Mishima S. Aqueous humor dynamics in man as studied by oral fluorescein. Jpn J Ophthalmol 1980;24: 346–362.

    Google Scholar 

  45. Mota MC, Cunha-Vaz JG. Studies on fluorescein concentration in the plasma. Graefes Arch Clin Exp Ophthalmol 1985;222:170–172.

    CAS  Google Scholar 

  46. Penniston JT. Fluorescence polarization measurement of binding of fluorescein to albumin. Exp Eye Res 1982;34:435–443.

    PubMed  CAS  Google Scholar 

  47. Rockey JH, Li W, Eccleston JF. Binding of fluorescein and carboxyfluorescein by human serum proteins: significance of kinetic and equilibrium parameters of association in ocular fluorometric studies. Exp Eye Res 1983; 37:455–466.

    PubMed  CAS  Google Scholar 

  48. Lund-Andersen H, Krogsaa B. Fluorescein in human plasma in vitro. Acta Ophthalmol (Copenh) 1982;60:701–708.

    CAS  Google Scholar 

  49. Palestine AG, Brubaker RF. Plasma binding of fluorescein in normal subjects and in diabetic patients. Arch Ophthalmol 1982;100: 1160–1161.

    PubMed  CAS  Google Scholar 

  50. Grotte D, Mattox V, Brubaker R. Fluorescent, physiological and pharmacokinetic properties of fluorescein glucuronide. Exp Eye Res 1985;40:23–33.

    PubMed  CAS  Google Scholar 

  51. Blair NP, Evans MA, Lesar TS, Zeimer RC. Fluorescein and fluorescein glucuronide pharmacokinetics after intravenous injection. Invest Ophthalmol Vis Sci 1986;27:1107–1114.

    PubMed  CAS  Google Scholar 

  52. Chahal PS, Neal MJ, Kohner EM. Metabolism of fluorescein after intravenous adminstration. Invest Ophthalmol Vis Sci 1985;26:764–768.

    PubMed  CAS  Google Scholar 

  53. Lund-Andersen H, Larsen R, Dalgaard P, Olsen W. Fluorescein and fluorescein glucuronide in the vitreous body of diabetic patients. Graefes Arch Clin Exp Ophthalmol 1987; 225:173–176.

    PubMed  CAS  Google Scholar 

  54. Lund-Andersen H, Krogsaa B, la Cour M, Larsen J. Quantitative vitreous fluorophotometry applying a mathematical model of the eye. Invest Ophthalmol Vis Sci 1985;26:698–710.

    PubMed  CAS  Google Scholar 

  55. Chahal PS, Chowienczyk PJ, Kohner EM. Measurement of blood-retinal barrier permeability: a reproducibility study in normal eyes. Invest Ophthalmol Vis Sci 1985;26:977–982.

    PubMed  CAS  Google Scholar 

  56. Kappelhof JP, van Best JA, van Valenberg PL, Oosterhuis JA. Inward permeability of the blood-retinal barrier by fluorophotometry. Invest Ophthalmol Vis Sci 1987;28:665–671.

    PubMed  CAS  Google Scholar 

  57. Cunha-Vaz JG, Gray JR, Zeimer RC, et al. Characterization of the early stages of diabetic retinopathy by vitreous fluorophotometry. Diabetes 1985;34:53–59.

    PubMed  CAS  Google Scholar 

  58. Roy MS, Bonner RF, Bungay PM, et al. Posterior vitreous fluorophotometry in normal subjects. Arch Ophthalmol 1986;104:1004–1008.

    PubMed  CAS  Google Scholar 

  59. Yoshida A, Hosaka A. A study on blood-retinal barrier in myopia—analysis employing vitreous fluorophotometry and computer simulation. Nippon Ganka Gakkai Zasshi 1986; 90:527–533.

    PubMed  CAS  Google Scholar 

  60. Chahal P, Fallon TJ, Jennings SJ, et al. Vitreous fluorophotometry in patients with no or minimal diabetic retinopathy. Diabetes Care 1986;9:134–139.

    PubMed  CAS  Google Scholar 

  61. Ogura Y, Zeimer RC, Cunha-Vaz JG. Evaluation of vitreous body integrity by vitreous fluorophotometry. Arch Ophthalmol 1987;105: 517–519.

    PubMed  Google Scholar 

  62. Blair NP, Zeimer RC, Rusin MM, Cunha-Vaz JG. Outward transport of fluorescein from the vitreous in normal human subjects. Arch Ophthalmol 1983;101:1117–1121.

    PubMed  CAS  Google Scholar 

  63. Maurice DM. Theory and methodology of vitreous fluorophotometry. Jpn J Ophthalmol 1985;29:119–130.

    PubMed  CAS  Google Scholar 

  64. Bursell SE, Delori FC, Yoshida A, et al. Vitreous fluorophotometric evaluation of diabetics. Invest Ophthalmol Vis Sci 1984;25:703–710.

    PubMed  CAS  Google Scholar 

  65. McCullough PC, Koester CJ, Campbell CJ, Anderson EA. An evaluation of the clinical role of vitreous fluorophotometry. Trans Am Ophthalmol Soc 1983;81:130–148.

    PubMed  CAS  Google Scholar 

  66. Kayazawa F. Ocular fluorophotometry in diabetic patients without apparent retinopathy. Ann Ophthalmol 1984;16:221–225.

    PubMed  CAS  Google Scholar 

  67. Kritz H, Irsigler K. Functional tests for diabetic retinopathy: nyctometry, flicker discrimination, and vitreofluorometry. In Irsigler K, Kritz H, Lovett R (eds): Diabetes Treatment with Implantable Insulin Infusion Systems. Urban & Schwarzenberg, Baltimore, 1983, pp. 160–173.

    Google Scholar 

  68. Kernell A, Ludvigsson J. Blood-retinal barriers in juvenile diabetics in relation to early clinical manifestations, HLA-DR types, and metabolic control. Graefes Arch Clin Exp Ophthalmol 1985;222:250–253.

    PubMed  CAS  Google Scholar 

  69. Kjaergaard JJ. Ocular fluorophotometry in normal subjects. Int J Microcirc Clin Exp 1983;2:199–205.

    PubMed  CAS  Google Scholar 

  70. Yoshida A, Murakami K, Kojima M. Investigation of the vitreo-retino-ciliary barrier by vitreous fluorophotometry. V. Alteration of the inward permeability of the blood-retinal barrier and the diffusion coefficient of fluorescein in the vitreous with aging in normal subjects. Nippon Ganka Gakkai Zasshi 1986; 90:589–594.

    PubMed  CAS  Google Scholar 

  71. White NH, Waltman SR, Krupin T, Santiago JV. Reversal of abnormalities in ocular fluorophotometry in insulin-dependent diabetes after five to nine months of improved metabolic control. Diabetes 1982;31:80–85.

    PubMed  CAS  Google Scholar 

  72. Nuzzi G, Vanelli M, Venturini I, et al. Vitreous fluorophotometry in juvenile diabetics after oral fluorescein. Arch Ophthalmol 1986;104:1630–1631.

    PubMed  CAS  Google Scholar 

  73. Cunha-Vaz JG, Zeimer RC, Wendell PW, Kiani R. Kinetic vitreous fluorophotometry in normal and non-insulin dependent diabetics. Ophthalmology 1982;89:751–756.

    PubMed  CAS  Google Scholar 

  74. Krupin T, Waltman SR. Fluorophotometry in juvenile-onset diabetes: long-term follow-up Jpn J Ophthalmol 1985;29:139–145.

    PubMed  CAS  Google Scholar 

  75. Brooks AM, Keith CG, Court JM, Hill MA. Vitreous fluorophotometry in children with type I diabetes mellitus. Aust J Ophthalmol 1984;12:39–43.

    PubMed  CAS  Google Scholar 

  76. Krupin T, Waltman SR, Oestrich C, et al. Vitreous fluorophotometry in juvenile-onset diabetes mellitus. Arch Ophthalmol 1978; 96:812–814.

    PubMed  CAS  Google Scholar 

  77. Kjaergaard JJ, Ohrt V. Ocular fluorophotometry in insulin-treated diabetic patients with and without retinopathy. Int J Microcirc Clin Exp 1983;2:207–213.

    PubMed  CAS  Google Scholar 

  78. Cunha-Vaz JG, Fonseca JR, Abreu JF, Ruas MA. A follow-up study by vitreous fluorophotometry of early retinal involvement in diabetes. Am J Ophthalmol 1978;86:467–473.

    PubMed  CAS  Google Scholar 

  79. Tsukahara Y, Ogura Y, Saitoh I, et al. Studies of the kinetic vitreous fluorophotometry. II. Adult-onset diabetes mellitus. Nippon Ganka Gakkai Zasshi 1984;88:1118–1123.

    PubMed  CAS  Google Scholar 

  80. Steno Study Group. Effect of 6 months of strict metabolic control on eye and kidney function in insulin-dependent diabetics with background retinopathy. Lancet 1982;1:121–124.

    Google Scholar 

  81. Mota MC, Leite E, Ruas MA, et al. Effect of cyclospasmol on early diabetic retinopathy. Int Ophthalmol 1987;10:3–9.

    PubMed  CAS  Google Scholar 

  82. Cunha-Vaz JG, Mota CC, Leite EC, et al. Effect of sulindac on the permeability of the blood-retinal barrier in early diabetic retinopathy. Arch Ophthalmol 1985;103:1307–1311.

    PubMed  CAS  Google Scholar 

  83. Fishman GA, Cunha-Vaz J, Salzano T. Vitreous fluorophotometry in patients with retinits pigmentosa. Arch Ophthalmol 1981; 99:1202–1207.

    PubMed  CAS  Google Scholar 

  84. Gieser DK, Fishman GA, Cunha-Vaz J. X-linked recessive retinitis pigmentosa and vitreous fluorophotometry: a study of female heterozygotes. Arch Ophthalmol 1980;98: 307–310.

    PubMed  CAS  Google Scholar 

  85. Fishman GA, Cunha-Vaz JE. Carriers of X-linked recessive retinitis pigmentosa: investigation by vitreous fluorophotometry. Int Ophthalmol 1981;4:37–44.

    PubMed  CAS  Google Scholar 

  86. Mallick KS, Zeimer RC, Fishman GA, et al. Transport of fluorescein in the ocular posterior segment in retinitis pigmentosa. Arch Ophthalmol 1984;102:691–696.

    PubMed  CAS  Google Scholar 

  87. Fishman GA, Rhee AJ, Blair NP. Blood-retinal barrier function in patients with cone or cone-rod dystrophy. Arch Ophthalmol 1986; 104:545–548.

    PubMed  CAS  Google Scholar 

  88. Miyake Y, Goto S, Ota I, Ichikawa H. Vitreous fluorophotometry in patients with cone-rod dystrophy. Br J Ophthalmol 1984;68:489–493.

    PubMed  CAS  Google Scholar 

  89. Miyake Y, Goto S, Ando F, Ichikawa H. Vitreous fluorophotometry in congenital stationary night blindness. Arch Ophthalmol 1983; 101:574–576.

    PubMed  CAS  Google Scholar 

  90. Mahlberg PA, Cunha-Vaz JG, Tessler HH. Vitreous fluorophotometry in pars planitis. Am J Ophthalmol 1983;95:189–196.

    PubMed  CAS  Google Scholar 

  91. Braude LS, Cunha-Vaz JG, Goldberg MF, et al. Diagnosing acute retrobulbar neuritis by vitreous fluorophotometry. Am J Ophthalmol 1981;91:764–773.

    PubMed  CAS  Google Scholar 

  92. Braude LS, Cunha-Vaz JG, Frenkel M. Vitreous fluorophotometry in optic nerve disease. Br J Ophthalmol 1982;66:560–566.

    PubMed  CAS  Google Scholar 

  93. Engell T, Krogsaa B, Lund-Andersen H. Breakdown of the blood-retinal barrier in multiple sclerosis measured by vitreous fluorophotometry. Acta Ophthalmol (Copenh) 1986; 64:583–587.

    CAS  Google Scholar 

  94. Jampol LM, White S, Cunha-Vaz J. Vitreous fluorophotometry in patients with hypertension. Arch Ophthalmol 1983;101:888–890.

    PubMed  CAS  Google Scholar 

  95. Krogsaa B, Lund-Andersen H, Parving HH, Bjaeldager P. The blood-retinal barrier permeability in essential hypertension. Acta Ophthalmol (Copenh) 1983;61:541–544.

    CAS  Google Scholar 

  96. Paylor RR, Carney MD, Ogura Y, et al. Alteration of the blood-retinal barrier and vitreous in sickle cell retinopathy. Int Ophthalmol 1986;9:103–108.

    PubMed  CAS  Google Scholar 

  97. Chahal P, Fallon TJ, Chowienczyk PJ, Kohner EM. Quantitative changes in blood-retinal barrier function in central retinal vein occlusion. Trans Ophthalmol Soc UK 1985;104: 861–863.

    PubMed  Google Scholar 

  98. Yoshida A, Nara Y, Kojima M. Investigation of simple correction methods for vitreous values in vitreous fluorophotometry. Nippon Ganka Gakkai Zasshi 1986;90:737–740.

    PubMed  CAS  Google Scholar 

  99. Miyake K. Vitreous fluorophotometry in aphakic or Pseudophakic eyes with persistent cystoid macular edema. Jpn J Ophthalmol 1985;29:146–152.

    PubMed  CAS  Google Scholar 

  100. Blair NP, Elman MJ, Rusin MM. Vitreous fluorophotometry in patients with cataract surgery. Graefes Arch Clin Exp Ophthalmol 1987;225:441–446.

    PubMed  CAS  Google Scholar 

  101. Miyake K. Blood-retinal barrier in longstanding aphakic eyes after extra- and intracapsular lens extractions. Graefes Arch Clin Exp Ophthalmol 1985;222:232–233.

    Google Scholar 

  102. Miyake K. Blood-retinal barrier in eyes with long-standing aphakia with apparently normal fundi. Arch Ophthalmol 1982;100:1437–1439.

    PubMed  CAS  Google Scholar 

  103. Merin S, Blair NP, Tso MO. Vitreous fluorophotometry in patients with senile macular degeneration. Invest Ophthalmol Vis Sci 1987; 28:756–759.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Zeimer, R.C. (1990). Assessment of Posterior Segment Transport by Vitreous Fluorophotometry. In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics