Skip to main content

Fluorescence and Raman Spectroscopy of the Crystalline Lens

  • Chapter
Noninvasive Diagnostic Techniques in Ophthalmology

Abstract

The continued transparency of the crystalline lens of the eye is essential for normal vision. Aging in the lens, characterized by changes in the structural lens proteins, can lead to decreasing lens transmission and reduced vision. These changes eventually manifest as clinically observable cataracts (lens opacities) and result in complete loss of vision. The most common type of cataract in humans is senile cataract, although the cause of this type of cataract is multifactorial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lerman S, Borkman RF. Spectroscopic evaluation and classification of the normal, aging and cataractous lens. Ophthalmic Res 1976;8:355–353.

    Google Scholar 

  2. Coren S, Girgus JS. Density of human lens pigmentation: in vivo measures over an extended age range. Vis Res 1972;12:343–346.

    Article  PubMed  CAS  Google Scholar 

  3. Weale RA. A Biography of the Eye-Development, Growth, Age H. K. Lewis, London, 1982.

    Google Scholar 

  4. Gunkel RD, Gouras P. Changes in scotopic visibility thresholds with age. Arch Ophthalmol 1963;69:4–9.

    PubMed  CAS  Google Scholar 

  5. Bloemendal H. Lens proteins. CRC Crit Rev Biochem 1982;12:1–38.

    Article  PubMed  CAS  Google Scholar 

  6. Bessems GJH, Hoenders HJ, Wollensak J. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract. Exp Eye Res 1983;37:627–637.

    Article  PubMed  CAS  Google Scholar 

  7. McNamara M, Augusteyn RC. Conformational changes in soluble lens proteins during the development of senile nuclear cataract. Curr Eye Res 1984;3:571–583.

    Article  PubMed  CAS  Google Scholar 

  8. Truscott RJW, Augusteyn RC. Changes in human lens proteins during nuclear cataract formation. Exp Eye Res 1977;24:159–170.

    Article  PubMed  CAS  Google Scholar 

  9. Takemoto LJ, Azari P. Isolation and characterization of covalently linked high molecular weight protein from human cataractous lenses. Exp Eye Res 1977;24:63–70.

    Article  PubMed  CAS  Google Scholar 

  10. De Jong WW, van Kleef FS, Bloemendal H. Intracellular carboxy terminal degradation of the alpha A chain of alpha-crystallin. Eur J Biochem 1974;48:271–276.

    Article  PubMed  Google Scholar 

  11. Liang JN, Chylack LT. Change in protein tertiary structure with nonenzymatic glycosylation of calf alpha-crystallin. Biochem Biophys Res Commun 1984;123:899–906.

    PubMed  CAS  Google Scholar 

  12. Spector A, Li S, Sigelman J. Age dependent changes in molecular size of lens proteins and their relationship to light scatter. Invest Ophthalmol Vis Sci 1974;13:795–798.

    CAS  Google Scholar 

  13. Lerman S, Borkman RF. Photochemistry and lens aging. Interdiscipl Top Gerontol 1978;13:154–182.

    CAS  Google Scholar 

  14. Van Heyningen R. Fluorescent compounds of the human lens. Ciba Found Symp Ser 1973;19:151–168.

    Google Scholar 

  15. Pirie A. Color and solubility of proteins of human cataracts. Invest Ophthalmol Vis Sci 1968;7:634–650.

    CAS  Google Scholar 

  16. Benedek GB. Theory of transparency of the eye. Appl Opt 1971;10:459–473.

    Article  PubMed  CAS  Google Scholar 

  17. Siezen RT, Argos P. Structural homology of lens crystallins. III. Secondary structure estimations from circular dichroism and predictions of amino acid sequence. Biochim Biophys Acta 1983;748:56–67.

    Article  PubMed  CAS  Google Scholar 

  18. Harding JJ, Dilley KJ. Structural proteins of the mammalian lens: review with emphasis on changes in development, aging and cataract. Exp Eye Res 1976;22:1–74.

    Article  PubMed  CAS  Google Scholar 

  19. Augusteyn RC. Protein modification in cataract: possible oxidative mechanisms. In Duncan G (ed): Mechanisms of Cataract Formation in the Human Lens. Academic Press, New York, 1981, pp. 72–115.

    Google Scholar 

  20. Garner MH, Spector A. Sulphur oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci USA 1980;77:1274–1277.

    Article  PubMed  CAS  Google Scholar 

  21. Kinoshita JH, Merola LO. Oxidation of thiol groups of the human lens. Ciba Found Symp 1973;19:173–184.

    Google Scholar 

  22. Liang JN, Chakrabarti B. Spectroscopic investigations of bovine lens crystallins. 1. Circular dichroism and intrinsic fluorescence. Biochemistry 1982;21:1847–1852.

    Article  PubMed  CAS  Google Scholar 

  23. Andley UP, Liang JN, Chakrabarti B. Spectroscopic investigations of bovine lens crystallins. 2. Fluorescent probes for polar-apolar nature and sulphydryl group accessibility. Biochemistry 1982;21:1853–1858.

    Article  PubMed  CAS  Google Scholar 

  24. Harding JJ. Disulphide cross-linked protein of high molecular weight in human cataractous lens. Exp Eye Res 1973;17:377–383.

    Article  PubMed  CAS  Google Scholar 

  25. Truscott RJW, Augusteyn RC. The state of sulphydryl groups in normal and cataractous human lenses. Exp Eye Res 1977;25:139–148.

    Article  PubMed  CAS  Google Scholar 

  26. Liang JN, Pelletier MK. Spectroscopic studies on mixed disulphide formation of lens crystallins with glutathione. Exp Eye Res 1987;45: 197–206.

    Article  PubMed  CAS  Google Scholar 

  27. Spector A. The aging of alpha-crystallin: a review. Exp Eye Res 1973;16:115–138.

    Article  PubMed  CAS  Google Scholar 

  28. Kramps HA, Stols ALH, Hoenders HJ, et al. On the quarternary structure of high molecular weight proteins from bovine lens. Eur J Biochem 1975;50:503–509.

    Article  PubMed  CAS  Google Scholar 

  29. Perry RE, Swamy MS, Abraham EC. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in strepto-zotocin-diabetic rats. Exp Eye Res 1987;44: 269–282.

    Article  PubMed  CAS  Google Scholar 

  30. Kuck JFR, Yu N-T, Askren CC. Total sulphydry by Raman spectroscopy in the intact lens of several species: variations in the nucleus and along the optical axis during aging. Exp Eye Res 1982;34:23–37.

    Article  PubMed  CAS  Google Scholar 

  31. Liang JN, Chylack LT. Age related change in protein conformation of normal human lens alpha-crystallin. Lens Res 1985;2:189–206.

    Google Scholar 

  32. Anderson E, Spector A. The state of the sulphydryl groups in normal and cataractous human lens proteins. I. Nuclear region. Exp Eye Res 1978;26:407–417.

    Article  PubMed  CAS  Google Scholar 

  33. Garner MH, Spector A. Sulphur oxidation in selected human cortical and nuclear cataracts. Exp Eye Res 1980;31:361–369.

    Article  PubMed  CAS  Google Scholar 

  34. Andley UP, Sutherland P, Liang JN, et al. Changes in tertiary structure of calf-lens alpha-crystallin by near UV irradiation: role of hydrogen peroxide. Photochem Photobiol 1984;40:343–349.

    Article  PubMed  CAS  Google Scholar 

  35. Zigman S, Schultz J, Yulo T, et al. The binding of photo-oxidized tryptophan to a lens gamma-crystallin. Exp Eye Res 1973;17:209–217.

    Article  PubMed  CAS  Google Scholar 

  36. Steven VJ, Rouzer CA, Monnier VM, et al. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci USA 1978;75:2918–2922.

    Article  Google Scholar 

  37. Liang JN, Chylack LT. Spectroscopic study on the effects of nonenzymatic glycation in human alpha-crystallin. Invest Ophthalmol Vis Sci 1987;28:790–794.

    PubMed  CAS  Google Scholar 

  38. Beswick HT, Harding JJ. Conformational changes induced in bovine lens alpha-crystallin by carbamylation. Biochem J 1984;223:221–227.

    PubMed  CAS  Google Scholar 

  39. Zigman S. Eye lens color: formation and function. Science 1971;171:807–809.

    Article  PubMed  CAS  Google Scholar 

  40. Bando M, Ishii Y, Nakajima A. Changes in the fluorescence intensity and coloration of human lens protein with normal lens aging and nuclear cataract. Ophthalmic Res 1976;8:456–463.

    Article  CAS  Google Scholar 

  41. Bando M, Nakajima A, Satoh K. Coloration of human lens proteins. Exp Eye Res 1975;20:489–492.

    Article  PubMed  CAS  Google Scholar 

  42. Satoh K, Bando M, Nakajima A. Fluorescence in human lens. Exp Eye Res 1973;16:167–172.

    Article  CAS  Google Scholar 

  43. Spector A, Roy D, Stauffer J. Isolation and characterization of an age dependent polypeptide from human lens with non-tryptophan fluorescence. Exp Eye Res 1975;21: 9–24.

    Article  PubMed  CAS  Google Scholar 

  44. Lerman S. Lens fluorescence in aging and cataract formation. Doc Ophthalmol Proc Ser 1976;8:241–260.

    CAS  Google Scholar 

  45. Kurzel RB, Wolbarsht ML, Yamanashi BS. Spectral studies on normal and cataractous intact human lenses. Exp Eye Res 1973;17:65–71.

    Article  PubMed  CAS  Google Scholar 

  46. Zigman S, Groff J, Yulo T. Enhancement of the non-tryptophan fluorescence of human lens proteins after near-UV light exposure. Photo-chem Photobiol 1977;26:505–512.

    Article  CAS  Google Scholar 

  47. Zigman S. Photochemical mechanisms in cataract formation. In Duncan G (ed): Mechanisms of Cataract Formation in the Human Lens. Academic Press, New York, 1981, pp. 117–149.

    Google Scholar 

  48. Bessems GJH, Keizer E, Wollensak J, et al. Non-tryptophan fluorescence from normal and cataractous human lenses. Invest Ophthalmol Vis Sci 1987;28:1157–1163.

    PubMed  CAS  Google Scholar 

  49. Jacobs R, Krohn DL. Fluorescent intensity profile of human lens sections. Invest Ophthalmol Vis Sci 1981;20:117–120.

    PubMed  CAS  Google Scholar 

  50. Pirie A. Formation of N-formyl kynurenine in proteins from lens and other sources by exposure to sunlight. Biochem J 1971;125:203–207.

    PubMed  CAS  Google Scholar 

  51. Dillon J, Spector A, Nakamishi K. Identification of beta-carbolines isolated from fluorescent lens proteins. Nature 1976;254:422–423.

    Article  Google Scholar 

  52. Truscott RJW, Faull K, Augusteyn RC. The identification of anthranilic acid in proteolytic digests of cataractous lens proteins. Ophthalmic Res 1977;9:263–267.

    Article  CAS  Google Scholar 

  53. Garcia-Castineiras S, Dillon J, Spector A. Non-tryptophan fluorescence associated with human lens proteins: apparent complexity and isolation of bityrosine and anthranilic acid. Exp Eye Res 1978;26:461–467.

    Article  PubMed  CAS  Google Scholar 

  54. Zigman S, Griess G, Yulo T, et al. Ocular protein alteration by near-UV light. Exp Eye Res 1973;15:255–264.

    Article  PubMed  CAS  Google Scholar 

  55. Dillon J, Spector A. A comparison of aerobic and anaerobic photolysis of lens proteins. Exp Eye Res 1980;31:591–599.

    Article  PubMed  CAS  Google Scholar 

  56. Dillon J, Photolytic changes in lens proteins. Curr Eye Res 1984;3:145–150.

    Article  PubMed  CAS  Google Scholar 

  57. Fujimori E. Crosslinking and blue fluorescence of photooxidized calf lens alpha-crystallin. Exp Eye Res 1982;34:381–388.

    Article  PubMed  CAS  Google Scholar 

  58. Zigler JS, Goosey JD. Photosensitized oxidation in the ocular lens: evidence for photosen-sitizers endogenous to the human lens. Photo-chem Photobiol 1981;33:869–874.

    Article  CAS  Google Scholar 

  59. Monnier VM, Cerami A. Non-enzymatic browning in vivo: possible process for aging in long-lived proteins. Science 1981;211:491–493.

    Article  PubMed  CAS  Google Scholar 

  60. Monnier VM, Cerami A. Detection of non-enzymatic browning products in human lens. Biochim Biophys Acta 1983;760:97–103.

    PubMed  CAS  Google Scholar 

  61. Pongor S, Ulrich PC, Bencsath FA, Cerami A. Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci USA 1984;81:2684–2688.

    Article  PubMed  CAS  Google Scholar 

  62. Oimomi M, Maeda Y, Hata F, et al. Glycation of cataractous lens in non-diabetic senile subjects and in diabetic patients. Exp Eye Res 1988;46:415–420.

    Article  PubMed  CAS  Google Scholar 

  63. Jacobs R, Krohn DL. Variation in fluorescence characteristics in intact human crystallin lens segments as a function of age. J Gerontol 1976;31:641–647.

    PubMed  CAS  Google Scholar 

  64. Borkman RF, Lerman S. Fluorescence spectra of tryptophan residues in human and bovine lens proteins. Exp Eye Res 1978;26:705–713.

    Article  PubMed  CAS  Google Scholar 

  65. Lerman S, Kuck JFR, Borkman RF, et al. Induction, acceleration and prevention (in vitro) of an aging parameter in the ocular lens. Ophthalmic Res 1976;8:213–226.

    Article  CAS  Google Scholar 

  66. Yu N-T, Bando M, Kuck JFR. Metabolic production of a blue-green fluorophor in lenses of dark-adapted mice and its increase with age. Invest Ophthalmol Vis Sci 1983;24:1157–1161.

    PubMed  CAS  Google Scholar 

  67. Yu N-T, Bando M, Kuck JFR. Fluorescence/ Raman intensity ratio for monitoring the pathologic state of human lenses. Invest Ophthalmol Vis Sci 1985;26:97–101.

    PubMed  CAS  Google Scholar 

  68. Yu N-T, Kuck JFR, Askren CC. Red fluorescence in older and brunescent human lenses. Invest Ophthalmol Vis Sci 1979;18:1278–1280.

    PubMed  CAS  Google Scholar 

  69. Yu N-T, Cai M-Z, Ho DJ-Y, Kuck JFR. Automated laser-scanning-microbeam fluorescence/ Raman image analysis of human lens with multichannel detection: evidence for metabolic production of a green fluorophor. Proc Natl Acad Sci USA 1988;85:103–106.

    Article  PubMed  CAS  Google Scholar 

  70. Bettelheim FA, Siew EL, Chylack LT. Studies on human cataracts. III. Structural elements in nuclear cataracts and their contribution to turbidity. Invest Ophthalmol Vis Sci 1981;20:348–354.

    PubMed  CAS  Google Scholar 

  71. Bettelheim FA, Chylack LT. Light scattering of whole excised human cataractous lenses: relationship between different light scattering parameters. Exp Eye Res 1985;41:19–30.

    Article  PubMed  CAS  Google Scholar 

  72. Burseil S-E, Craig MS, Karalekas DP. Diagnostic evaluation of human lenses. SPIE Proc 1986;605:87–93.

    Google Scholar 

  73. Benedek GB, Chylack LT, Libondi T, et al. Quantitative detection of the molecular changes associated with early cataractogenesis in the living human lens using quasi-elastic light scattering. Curr Eye Res 1987;6:1421–1432.

    Article  PubMed  CAS  Google Scholar 

  74. Schachar RA, Solin SA. The microscopic protein structure of the lens with a theory for cataract formation as determined by Raman spectroscopy of intact bovine lenses. Invest Ophthalmol Vis Sci 1975;14:380–396.

    CAS  Google Scholar 

  75. Yu N-T. Raman spectroscopy: a conformational probe in biochemistry. CRC Crit Rev Biochem 1977;4:229–280.

    Article  PubMed  CAS  Google Scholar 

  76. Barron BC, Yu N-T, Kuck JFR. Raman spectroscopic evaluation of aging and long-wave UV exposure in guinea-pig lens: a possible model for human aging. Exp Eye Res 1988; 46:249–258.

    Article  PubMed  CAS  Google Scholar 

  77. Yu N-T, Kuck JFR, Askren CC. Laser Raman spectroscopy of the lens in situ, measured in an anesthetized rabbit. Curr Eye Res 1982; 1:615–618.

    Article  CAS  Google Scholar 

  78. Kopp SJ, Glonek T, Greiner JV. Interspecies variation in mammalian lens metabolites as detected by phosphorous-31 nuclear magnetic resonance. Science 1982;215:1622–1625.

    Article  PubMed  CAS  Google Scholar 

  79. Schleich T, Willis JA, Matson GB. Longitudinal (T1) relaxation times of phosphorous metabolites in bovine and rabbit lens. Exp Eye Res 1984;39:455–468.

    Article  PubMed  CAS  Google Scholar 

  80. Willis JA, Schleich T. The effect of prolonged elevated glucose levels on phosphate metabolism of the rabbit lens in perfused organ culture. Exp Eye Res 1986;43:329–341.

    Article  PubMed  CAS  Google Scholar 

  81. Regnauld J. Sur la fluorescence des milieux de l’oeil chez l’homme et quelques mammiferes. L’Institut 1858;26:4101–4109.

    Google Scholar 

  82. Klang G. Measurements and studies of the fluorescence of the human lens in vivo. Acta Ophthalmol [Suppl] (Copenh) 1948;31:1–151.

    Google Scholar 

  83. Vannas M, Wilska A. Eine Methode zur Messung der Fluoreszenz der lebenden mens-chlichen Augenlinse und eine Untersuchung uber ihre Abhangigkeit vom alter. Klin Monatsbl Augenheilkd 1935;95:53–59.

    Google Scholar 

  84. Helve J, Nieminen H. Autofluorescence of human diabetic lens in vivo. Am J Ophthalmol 1976;81:491–494.

    Google Scholar 

  85. Kuck JFR, Yu N-T. Raman and fluorescence emission of the human lens: a new fluorophor. Exp Eye Res 1978;27:737–741.

    Article  PubMed  CAS  Google Scholar 

  86. Bursell S-E, Delori FC, Yoshida A. Instrument characterization for vitreous fluoro-photometry. Curr Eye Res 1982;1:711–716.

    Article  CAS  Google Scholar 

  87. Haughton JF, Yu N-T, Bursell S-E. In vivo lens autofluorescence measurements. Invest Ophthalmol Vis Sci 1987;28(suppl): 89.

    Google Scholar 

  88. Yu N-T, Barron BC, Kuck JFR, Bursell S-E. Artifact-free measurements of long wavelength fluorescence of human lens chro-mophores. Invest Ophthalmol Vis Sci 1987;28 (suppl): 389.

    Google Scholar 

  89. Bleeker JC, van Best JA, Vrij L, et al. Autofluorescence of the lens in diabetic and healthy subjects by fluorophotometry. Invest Ophthalmol Vis Sci 1986;27:791–794.

    PubMed  CAS  Google Scholar 

  90. Hockwin O, Lerman S, Ohrloff C. Investigations on lens transparency and its disturbances by microdensitometric analysis of scheimpflug photographs. Curr Eye Res 1984;3:15–22.

    Article  PubMed  CAS  Google Scholar 

  91. Chylack LT, Rosner B, White O, et al. Standardization and analysis of digitized photographic data in the longitudinal documentation of cataractous growth. Curr Eye Res 1988;7: 223–235.

    Article  PubMed  Google Scholar 

  92. Dragomirescu V, Hockwin O, Koch H-R, Sasaki K. Development of a new equipment for rotating slit image photography according to Scheimpflug’s principle. Interdiscipl Top Gerontol 1978;13:118–130.

    Google Scholar 

  93. Hockwin O, Dragomirescu V, Laser H. Measurements of lens transparency or its disturbances by densitometric image analysis of Scheimpflug photographs. Graefes Arch Clin Exp Ophthalmol 1982;219:255–262.

    Article  PubMed  CAS  Google Scholar 

  94. Lerman S, Hockwin O. Ultraviolet-visible slit lamp densitography of the human eye. Exp Eye Res 1981;33:587–596.

    Article  PubMed  CAS  Google Scholar 

  95. Lerman S, Hockwin O. Automated biometry and densitography of anterior segment of the eye. Graefes Arch Clin Exp Ophthalmol 1985;223:121–129.

    Article  PubMed  CAS  Google Scholar 

  96. Bursell S-E, Delori FC, Yoshida A, et al. Vitreous fluorophotometric evaluation of diabetics. Invest Ophthalmol Vis Sci 1984;25: 703–710.

    PubMed  CAS  Google Scholar 

  97. Munnerlyn CR, Gray JR, Henning DR. Design considerations for a fluorophotometer for ocular research. Graefes Arch Clin Exp Ophthalmol 1985;222:209–211.

    Article  PubMed  CAS  Google Scholar 

  98. Zeimer RC, Noth JM. A new method of measuring in vivo lens transmittance, and study of lens scatter, fluorescence and transmittance. Ophthalmic Res 1984;16:246–255.

    Article  PubMed  CAS  Google Scholar 

  99. Van Best JA, Tjin A, Tsoi E, et al. In vivo assessment of lens transmission for blue-green light by autofluorescence measurement. Ophthalmic Res 1985;17:90–95.

    Article  PubMed  Google Scholar 

  100. Zeimer RC, Lim KH, Ogura Y. Evaluation of and objective method for the in-vivo measurement of changes in light transmittance from the human crystallin lens. Exp Eye Res 1987; 45:969–976.

    Article  PubMed  CAS  Google Scholar 

  101. Mosier MA, Occhipinti JR, Burstein NL. Autofluorescence of the crystallin lens in diabetes. Arch Ophthalmol 1986;104:1340–1343.

    PubMed  CAS  Google Scholar 

  102. Borkman RF, Tassin JD, Lerman S. Fluorescence lifetimes of chromophores in intact human lenses and lens proteins. Exp Eye Res 1981;32:313–322.

    Article  PubMed  CAS  Google Scholar 

  103. Carlyle LR, Rand LI, Bursell SE. In-vivo lens autofluorescence at different excitation wavelengths. Invest Ophthalmol Vis Sci 1988;29 (suppl): 150.

    Google Scholar 

  104. American National Standards Institute. Safe Use of Lasers. Z 136.1. ANSI, New York, 1976.

    Google Scholar 

  105. Raman CV, Krishna KS. A new type of secondary radiation. Nature 1928;121:501–505.

    Article  CAS  Google Scholar 

  106. Lord RC. Laser Raman spectroscopy of biological macromolecules. Pure Appl Chem 1971;7(suppl):179–191.

    Google Scholar 

  107. Koenig JL. Raman spectroscopy of biological molecules: a review. J Polym Sci Macromol Rev 1972;6:59–92.

    Article  CAS  Google Scholar 

  108. Thomas GJ. Raman spectroscopy of biopolymers. In Durig JR (ed): Vibrational Spectra and Structure. Vol. 3. Marcel Dekker, New York, 1975, pp. 239–261.

    Google Scholar 

  109. Yu N-TJ. Raman Spectroscopy. Vol. 9. Wiley, New York, 1980, pp. 166–171.

    Google Scholar 

  110. Yu N-T, East EJ. Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions. J Biol Chem 1975;250:2196–2202.

    PubMed  CAS  Google Scholar 

  111. Lord RC, Yu N-T. Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids. J Mol Biol 1974;50:509–524.

    Article  Google Scholar 

  112. Yu N-T. Comparison of protein structures in crystals in lyophilized state and in solution by laser Raman scattering. III. ß-Lactalbumin. J Am Chem Soc 1974;96:4664–4668.

    Article  PubMed  CAS  Google Scholar 

  113. East EJ, Chang RCC, Yu N-T. Raman spectroscopic measurements of total sulphydryl in intact lens as affected by aging and ultraviolet irradiation: deuterium exchange as a probe for accessible sulphydryls in living tissue. J Biol Chem 1978;253:1436–1441.

    PubMed  CAS  Google Scholar 

  114. Yu N-T, DeNagel DC, Kuck JFR. Ocular lenses. In Spiro TD (ed): Biological Applications of Raman Spectroscopy. Vol. 1: Raman Spectra and the Conformation of Biological Macromolecules. Wiley, New York, 1985, pp. 47–80.

    Google Scholar 

  115. Yu N-T, Barron BC. Vision research: Raman/ fluorescence studies on aging and cataract formation in the lens. In Pfit-Mrzljak G (ed): Supramolecular Structure and Function. Springer-Verlag, Berlin, 1986, pp. 104–128.

    Google Scholar 

  116. Yu N-T, DeNagel DC, Pruett PL, Kuck JFR. Disulphide bond formation in the eye lens. Proc Natl Acad Sci USA 1985;82:7965–7968.

    Article  PubMed  CAS  Google Scholar 

  117. Yu N-T, Kuck JFR. Age related changes in lens protein tertiary structure as detected by a sensitive multichannel difference Raman technique. Invest Ophthalmol Vis Sci 1981;20 (suppl): 132.

    Google Scholar 

  118. Askren CC, Yu N-T, Kuck JFR. Variation of the concentration of sulphydryl along the visual axis of aging lenses by laser Raman optical dissection technique. Exp Eye Res 1979;29:647–654.

    Article  PubMed  CAS  Google Scholar 

  119. Van Heyningen R. Photo-oxidation of lens proteins by sunlight in the presence of fluorescent derivatives of kynurenine isolated from human lens. Exp Eye Res 1973;17:137–147.

    Article  PubMed  Google Scholar 

  120. Barron BC, Yu N-T, Kuck JFR. Tryptophan Raman/457.9-nm-excited fluorescence of intact guinea pig lenses in aging and ultraviolet. Invest Ophthalmol Vis Sci 1987;28:815–821.

    PubMed  CAS  Google Scholar 

  121. Mathies R, Yu N-T. Raman spectroscopy with intensified Vidicon detectors: a study of intact bovine lens proteins. J Raman Spectrosc. 1978;7:349–352.

    Article  Google Scholar 

  122. Yu N-T, Bursell S-E. A new approach to study of human cataractogenesis: fluorescence/ Raman intensity ratio imaging. In Twardoski J (ed): Spectroscopic and Structural Studies of Materials and Systems of Fundamental Importance to Biology and Medicine. Sigma Press, 1988. Wilmslow, Cheshire, U.K., pp 65–76

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bursell, SE., Yu, NT. (1990). Fluorescence and Raman Spectroscopy of the Crystalline Lens. In: Masters, B.R. (eds) Noninvasive Diagnostic Techniques in Ophthalmology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8896-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8896-8_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8898-2

  • Online ISBN: 978-1-4613-8896-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics