Evaluating Cataract Development with the Scheimpflug Camera

  • Otto Hockwin
  • Kazuyuki Sasaki
  • Sidney Lerman

Abstract

Documentation of pathologic findings in the lens over a prolonged period is rather difficult. Until recently, only written reports or drawings of the process have been employed. Photography with the slit-lamp microscope has not been effective because of the insufficient depth of field and the poor reproduction capacity of instrumental parameters. Occasionally, opacifications of the lens have been photographed using the retroillumination technique1,2 where the cataracts appear as shaded areas, which may then be evaluated by planimetry. Application of this method to clinical problems, however, has met with difficulties,3–7 which may in part be attributed to problems of image analysis but are mostly due to inadequate reproducibility.8,9

Keywords

Tryptophan Fluores Cardiomyopathy Psoriasis Digoxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hockwin O, Bergeder HD, Kaiser L. Uber die Galaktose kataract junger Ratten nach Ganzkörper-Röntgenbestrahlung, Ber Dtsch Ophthalmol Ges. 1976;68:135.Google Scholar
  2. 2.
    Koch H-R, Dümling H, Hockwin O, Rast F. Investigations of the influence of oxyphenbuta-zone on formation of galactose-induced cataract in rats. Ophthal Ophthalmic Res 1971; 2:60.CrossRefGoogle Scholar
  3. 3.
    Backhaus W. Untersuchungen uber den Einfluss von 1-Hydroxyprido (3, 2–5-phenoxazon-3-carboxylsaure auf die Cataracta senilis beim Menschen. Dissertation, Medical Faculty of Bonn, 1973.Google Scholar
  4. 4.
    Hockwin O, Weigelin E, Hendrickson P, Koch H-R. Kontrolle des Trübungsverlaufs bei der Cataracta senilis durch Linsenphotographie im regredienten Licht. Klin Monatsbl Augen-heilkd 1975;166:498.Google Scholar
  5. 5.
    Hendrickson P, Hockwin O, Koch H-R. Verbesserte Methoden der Linsenphotographie im regredienten Licht. Klin Monatsbl Augen-heilkd 1977;170:764.Google Scholar
  6. 6.
    Maclean H. A controlled trial of Catalin in senile cortical cataract. Presented to the International Congress of Ophthalmology, Kyoto, Japan, 1978.Google Scholar
  7. 7.
    Maclean H, Taylor CJ. Assessment of cortical cataract in vivo. Proc Int Soc Eye Res 1980; 1:6.Google Scholar
  8. 8.
    Mayer H. Application of digital image analysis in cataract retroillumination technique. Ophthal Ophthalmic Res 1987;19:266–270.CrossRefGoogle Scholar
  9. 9.
    Chylack LT, McCarthy D. How to avoid invalidation by changes in pupil size of longitudinal measures of cataract growth by retroillumination photography. Invest Ophthalmol Vis Sci 1987;28(suppl):328.Google Scholar
  10. 10.
    Scheimpflug T. Der Photoperspektograph und seine Anwendung. Photogr Korr 1906;43:516.Google Scholar
  11. 11.
    Drews C. Depth of field in slit lamp photography: an optical solution using the Scheimpflug principle. Ophthalmologica 1964;148:143.PubMedCrossRefGoogle Scholar
  12. 12.
    Niesel P. Spaltlampenphotographie der Linse fur Messzzwecke. Ophthalmologica 1966; 152:387.PubMedCrossRefGoogle Scholar
  13. 13.
    Niesel P. Spaltlampenphotographie mit der Haag-Streit Spaltlampe 900. Ophthalmologica 1966;151:489.PubMedCrossRefGoogle Scholar
  14. 14.
    Patnaik B. A photographic study of accommodative mechanisms: changes in the lens nucleus during accommodation. Invest Ophthalmol 1967;6:601.PubMedGoogle Scholar
  15. 15.
    Brown N. Slit image photography. Trans Ophthalmol Soc UK 1969;89:397.Google Scholar
  16. 16.
    Brown N. Slit image photography and measurement of the eye. Med Biol 1973;3:192.Google Scholar
  17. 17.
    Brown N. Lens changes with age and cataract; slit image photography. In: The Human Lens in Relation to Cataract. Ciba Foundation Symposium 19. Elsevier-Excerpta Medica-North Holland, Amsterdam, 1973, p. 65.Google Scholar
  18. 18.
    Spector A, Stauffer J, Sigelmann J. Preliminary observations upon the proteins of the human lens. In: The Human Lens in Relation to Cataract. Ciba Foundation Symposium 19. Elsevier-Excerpta Medica-North Holland, Amsterdam, 1973, p. 185.Google Scholar
  19. 19.
    Ben-Shira, Weinberger D, Bodenheimer J, Yassur Y. Clinical method for measurement of light backscattering from the in vivo human lens. Invest Ophthalmol Vis Sci 1980;19:435.Google Scholar
  20. 20.
    Niesel P, Bachmann E. Beobachtungen am Abspaltungsstreifen der Linse bei Glaukomkranken. Graefes Arch Klin Exp Ophthalmol 189:211,1974.CrossRefGoogle Scholar
  21. 21.
    Niesel P, Rokos L. Der Abspaltungsstreifen in der Spaltlampenphotographie der Linse bei Augenerkrankungen. Graefes Arch Klin Exp Ophthalmol 1976;199:21.CrossRefGoogle Scholar
  22. 22.
    Niesel P, Krauchi H, Backmann E. Der Abspaltungsstreifen in der Spaltlampenphotographie der alternden Linse. Graefes Arch Klin Exp Ophthalmol 1976;199:11.CrossRefGoogle Scholar
  23. 23.
    Albrecht M, Barany E. Early lens changes in Macaca fascicularis monkeys under topical drug treatment with echothiophate or car-bachol studies by slit image photography. Invest Ophthalmol Vis Sci 1979;18:179.PubMedGoogle Scholar
  24. 24.
    Marcantonio JM, Duncan G. Classification of human cataractous lenses by colour and sodium content, Ophthalmic Res 1981; 13:275.Google Scholar
  25. 25.
    Dragomirescu V, Hockwin O, Koch H-R, Sasaki K. Development of a new equipment for rotating slit imge photography according to Scheimpflug’s principle. Interdiscipl Top Gerontol 1978;13:118.Google Scholar
  26. 26.
    Hockwin O, Dragomirescu V, Koch H-R. Photographic documentation of disturbances of the lens transparency during aging with a Scheimpflug lens camera system. Ophthalmic Res 1979;11:405.CrossRefGoogle Scholar
  27. 27.
    Dragomirescu V, Hockwin O, Koch H-R. Improvements of reproducibility of follow-up lens documentation with the rotating Scheimpflug camera system. Ophthalmic Res 1978;10:333.Google Scholar
  28. 28.
    Dragomirescu V, Hockwin O, Koch H-R. Photocell device for slit beam adjustment to the optical axis of the eye in Scheimpflug photography. Ophthalmic Res 1980;12:78.CrossRefGoogle Scholar
  29. 29.
    Dragomirescu V, Hockwin O, Method and equipment for computerized microdensito-graphic measurement of Scheimpflug anterior eye segment photographs. Proc Int Soc Eye Res 1980;1:22.Google Scholar
  30. 30.
    Dragomirescu V, Hockwin O. Scheimpflug photography of the anterior eye segment without mydriasis. Ophthalmic Res 1981;13:270.Google Scholar
  31. 31.
    Lerman S, Hockwin O, Dragomirescu V. UV-visible slit lamp densitography of the human eye. Proc Int Soc Eye Res 1980;1:6.Google Scholar
  32. 32.
    Lerman S, Hockwin O, Dragomirescu V. In vivo lens fluorescence photography. Opthalmic Res 1981;13:224.CrossRefGoogle Scholar
  33. 33.
    Hockwin O, Dragomirescu V, Koch H-R. Spezialkamera fur Augenphotographie: Dokumentation von Linsentrubungen. DFG Mitteilungen 1978;3:17.Google Scholar
  34. 34.
    Hockwin O, Dragomirescu V, Koch H-R. Follow-up methods for documentation of lens opacities with new photographic equipment (TOPCON Lens Densitograph). Presented at the XXIII International Congress of Ophthalmology, Kyoto, Japan, 1978.Google Scholar
  35. 35.
    Hockwin O, Dragomirescu V, Koch H-R. Ein neues Verfahren zur photographischen Verlaufsdokumentation am Auge. Bonner Univer-sitatsblätter 1979;37.Google Scholar
  36. 36.
    Chen T, Mayer H, Bates S et al., Inter- and intraoperator correlation of SL-45 lens photography. Lens Res 1988;5:43.Google Scholar
  37. 37.
    Sasaki K, Sakamoto Y, Shibata T, et al. New Camera for crystalline lens photography. J Ophthalmol Opt Soc Jpn 1985;6:40–44.Google Scholar
  38. 38.
    Sasaki K, Sakamoto Y, Shibata T, Kojima M. Simultaneous Scheimpflug and retroillumina-tion photography of the crystalline lens. In Fiorentini A, Guyton DL, Siegel IM (eds): Advances in Diagnostic Visual Optics. Springer-Verlag, Berlin, 1987, pp. 47–51.Google Scholar
  39. 39.
    Sasaki K. A new approach to crystalline lens documentation J. Ophthal, Photography 1986; 9:112.Google Scholar
  40. 40.
    Hockwin O, Lerman S, Laser H, Drago-mirescu V. Image analysis of Scheimpflug photos of the lens by multiple linear micro-densitometry. Lens Res 1985;2:337.Google Scholar
  41. 41.
    Hockwin O, Lerman S, Ohrloff C. Investigations on lens transparency and its disturbances by microdensitometric analyses of Scheimpflug photographs. Curr Eye Res 1984;3:15.PubMedCrossRefGoogle Scholar
  42. 42.
    Sasaki K, Shibata, T, Fukuda M, Hockwin O. Changes of lens transparency with aging: a clinical study with human volunteers using a Scheimpflug camera. In Regnault F, Hockwin O, Courtois Y (eds): Ageing of the Lens. Elsevier-North Holland, Amsterdam, 1980.Google Scholar
  43. 43.
    Shibata T, Hockwin O, Weigelin E, et al. Biometrie der Linse in Abhangigkeit vom Lebensalter und von der Kataraktmorphologie: Auswertung von Scheimpflug-Photos des vorderen Augenabschnittes. Klin, Monatsbl Augenheilkd 1984;185:35.CrossRefGoogle Scholar
  44. 44.
    Hockwin O, Dragomirescu V. Die Scheimp-flug-Photographie des vorderen Augenabschnittes: Eine Methode zur Messung der Linsentransparenz im Rahmen einer Verlaufsbeobachtung. Z Prakt Augenheilkd 1981; 2:129.Google Scholar
  45. 45.
    Hockwin O, Dragomirescu V. Verlaufsbeobachtungen von Linsentrübungen mit der Scheimpflug-Photographie und densitometris-cher Bildanalyse. In Hockwin O (ed): Altern der Linse. Mayr, Miesbach, 1982, p. 125.Google Scholar
  46. 46.
    Hockwin O, Dragomirescu V, Laser H. Measurements of lens transparency by densitometric image anlysis of Scheimpflug-photographs. Graefes Arch Klin, Exp Ophthalmol 1983;219:255. (1983).Google Scholar
  47. 47.
    Hockwin O, Dragomirescu V, Laser H. Age related changes obtained in microdensitometric image analysis of Scheimpflug-photographs. Lens Res 1983;1:207.Google Scholar
  48. 48.
    Lerman S, Hockwin O. Automated biometry and densitography of the anterior segment of the eye. Graefes Arch Klin, Exp Ophthalmol 1985;223:121.CrossRefGoogle Scholar
  49. 49.
    Hockwin O, Wegener A, Sisk DR, Efficacy of AL-1576 in preventing naphthalene cataract in three rat strains: a slit lamp and Scheimpflug photographic study. Lens Res 1985;2:113.Google Scholar
  50. 50.
    Mayer H. Improvement in evaluation of Scheimpflug photography. Lens Res 1986; 3:227.Google Scholar
  51. 51.
    Mayer H, Irion KM. New approach to area image analysis of Scheimpflug photos of the anterior eye segment. Ophthalmic Res 1985; 17:106.PubMedCrossRefGoogle Scholar
  52. 52.
    Hockwin O, Laser H, Kapper K. Image analysis of Scheimpflug negatives: comparative quantitative assessment of the film blackening by area planimetry and height measurements of linear densitograms. Ophthalmic Res 1988; 20:99PubMedCrossRefGoogle Scholar
  53. 53.
    Chen T, Laser H, Sartorius S, et al. Reader’s variability in the densitometric evaluation of SL 45 lens photographs. Lens Res 1988;5:55.Google Scholar
  54. 54.
    Lerman S, Hockwin O. Measurement of anterior chamber diameter and biometry of anterior segment by Scheimpflug slit lamp photography. Am Intraocular implant Soc J 1985;11: 149–152.Google Scholar
  55. 55.
    Lerman S. In vivo and in vitro biophysical studies of human cataractogenesis. Lens Res 1986;3:137–160.Google Scholar
  56. 56.
    Shibata T, Sasaki K. Biometry of human crystalline lenses—thickness of layers in transparent lenses and subcapsular cataracts. Acta Soc Ophthalmol Jpn 1986;90:453–458.Google Scholar
  57. 57.
    Olbert D. Die Biometrie des vorderen Augenabschnittes. Habil. Schrift, University of Heidelberg, 1985.Google Scholar
  58. 58.
    Kampfer T, Wegener, A, Dragomirescu V, Hockwin O. Improved biometry of the anterior eye segment. Ophthalmic Res 1989;21:239PubMedCrossRefGoogle Scholar
  59. 59.
    Mayer H, Irion KM. Doppelblindstudie uber die Wirksamkeit des Kaliumjodids bei der Behandlung des grauen Alstersstars. Fortschr Ophthalmol 1985;82:520.PubMedGoogle Scholar
  60. 60.
    Mayer H, König H. Objektivierfe Katar-aketentwicklung unter Therapie mit Cyto-chrom C, Natriumsuccinat, Adenosin, Nikotinsaureamid und Sorbit. Fortschr Ophthalmol 1987;84:261.PubMedGoogle Scholar
  61. 61.
    Mayer H, Irion KM, Poganatz J. Digitale Bildverarbeitung zur Analyse von Scheimpflugpho-tographien des vorderen Augenabschnittes. Biomed Tech (Berlin) 1985;30:207.CrossRefGoogle Scholar
  62. 62.
    Sasaki K, Shibata T. Changes of human lens transparency with aging. III. Analyzing from color images. Acta Soc Ophthalmol Jpn 1981; 85:1709–1715.Google Scholar
  63. 63.
    Sasaki K, Shibata T. Age related changes of lens transparency: image analysis by photographic sensitometry. In Henkind P (ed): XXIV International Congress of Ophthalmology. Lippincott, Philadelphia, 1983, pp. 350–353.Google Scholar
  64. 64.
    Sasaki K, Hiiragi M, Sakamoto Y. Documentation of coloration of crystalline lens in vivo. Jpn J Clin Ophthalmol 1983;37:832–833.Google Scholar
  65. 65.
    Hiiragi M, Sakamoto Y, Sasaki K. Documentation of opaque crystalline lens coloration according to the CIE 1931 standard col-orimetric system. J Ophthalmol Opt Soc Jpn 1984;5:36–39.Google Scholar
  66. 66.
    Sasaki K, Hiiragi M, Sakamoto Y, Shibata T. In vivo color analysis of human crystalline lenses. Ophthalmic Res 1985;17:21–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Shibata T, Sasaki K, Hiiragi M. In vivo classification of nuclear color of human crystalline lenses. Folia Ophthalmol Jpn 1985;36:815–819.Google Scholar
  68. 68.
    Hockwin O, Dragomirescu V, Shibata T, et al. Long term follow up examination of experimental cataracts in rats by Scheimpflug photography and densitometry. Graefes Arch Klin Exp Ophthalmol 1984;222:20CrossRefGoogle Scholar
  69. 69.
    Hockwin O, Laser H, Wegener A. Investigations of rat eyes with diabetic cataract and naphthalene cataract by Zeiss Scheimpflug measuring system SLC, Graefes Arch Klin Exp Ophthalmol 1986;224:502.CrossRefGoogle Scholar
  70. 70.
    Lerman S, Kuck JF, Borkman R, Saker E. Acceleration of an aging parameter (Fluoro-gen) in the ocular lens. Ann Ophthalmol 1976;8:558–562.PubMedGoogle Scholar
  71. 71.
    Lerman S, Kuck JF, Borkman R, Saker E. Induction, acceleration, and prevention (in vitro) of an aging parameter in the ocular lens. Ophthalmic Res 1976;8:213–226.CrossRefGoogle Scholar
  72. 72.
    Lerman S. Lens fluorescence in aging and cataract formation. Doc Ophthalmol Proc Sers 1976;8:241–260.Google Scholar
  73. 73.
    Lerman S. Borkman RF. Spectroscopic evaluation and classification of the normal, aging, and cataractous lens. Ophthalmic Res 1976; 8:335–353.CrossRefGoogle Scholar
  74. 74.
    Lerman S, Borkman RF. A method for detecting 8-methoxypsoralen in the ocular lens. Science 1977;197:1287–1288.PubMedCrossRefGoogle Scholar
  75. 75.
    Lerman S, Jocoy M, Borkman RF. Photosensi-tization of the lens by 8-methoxypsoralen. Invest ophthalmol Vis Sci 1977;16:1065–1068.PubMedGoogle Scholar
  76. 76.
    Lerman S, Borkman RF. Photochemistry and lens aging. Interdiscipl Top Gerontol 1978; 13:154–182.Google Scholar
  77. 77.
    Lerman S. Lens transparency and aging. In Regnault F, Hockwin O, Courtois Y (eds): Aging of the Lens. Elsevier, Amsterdam, 1980, pp. 263–279.Google Scholar
  78. 78.
    Lerman S, Megaw J, Willis I. Potential ocular complications of PUVA therapy and their prevention, J Invest Dermatol 1980;74:197–199.PubMedCrossRefGoogle Scholar
  79. 79.
    Lerman S. Human ultraviolet radiation cataracts. Ophthalmic Res 1980;12:303–314.CrossRefGoogle Scholar
  80. 80.
    Lerman S, Megaw J, Willis I. Potential ocular complications of PUVA therapy and their prevention. J Invest Dermatol 1980;74:197–199.PubMedCrossRefGoogle Scholar
  81. 81.
    Lerman S, Magaw J, Gardner K, et al. Localization of 8-methoxypsoralen in ocular tissues. Ophthalmic Res 1981;13:106–116.CrossRefGoogle Scholar
  82. 82.
    Lerman S, Megaw J, Gardner K. P-UVA therapy and human cataractogenesis. Invest Ophthalmol Vis Sci 1982;23:801–804.PubMedGoogle Scholar
  83. 83.
    Lerman S, Megaw J, Gardner K. Allopurinol therapy and human cataractogenesis. Am J Ophthalmol 1982;94:141–146.PubMedGoogle Scholar
  84. 84.
    Lerman S, Megaw J, Fraunfelder F. Further studies on allopurinol therapy and human cataractogenesis. Am J Ophthalmol 1984; 97:205–209.PubMedGoogle Scholar
  85. 85.
    Lerman S. Photosensitizing drugs and their possible role enhancing ocular toxicity. Ophthalmology 1986;93:304–318.PubMedGoogle Scholar
  86. 86.
    Lerman S. In vivo methods to evaluate ocular drug efficacy and side effects. In Hockwin O (ed): Concepts in Toxicology. Vol. 4. Karger, Basel, 1987, pp. 87–104.Google Scholar
  87. 87.
    Lerman S, Hockwin O, Dragomirescu V. In vivo lens fluorescence photography. Ophthalmic Res 1981;13:224–228.CrossRefGoogle Scholar
  88. 88.
    Lerman S, Hockwin O, UV-visible slit lamp densitography of the human eye. Exp Eye Res 1981;33:587–596.PubMedCrossRefGoogle Scholar
  89. 89.
    Hockwin O, Lerman S. Clinical evaluation of direct and photosensitized UV radiation damage to the lens. Ann Ophthalmol 1982; 14:220–223.PubMedGoogle Scholar
  90. 90.
    Lerman S. Ocular phototoxicity and PUVA therapy: an experimental and clinical evaluation: FDA photochemical toxicity symposium. J Natl Cancer Inst 1982;69:287–302.PubMedGoogle Scholar
  91. 91.
    Lerman S. UV slit lamp densitography of the human lens; an additional tool for prospective studies of changes in lens transparency. In: Ageing of the Lens Symposium, Strasbourg. Integra, Munich, 1982, pp. 139–154.Google Scholar
  92. 92.
    Lerman S, Dragomirescu V, Hockwin O. In vivo monitoring of direct and photosensitized UV radiation damage to the lens. In: Acta XXIV International Congress of Ophthalmology. Vol. 1. 1983, pp. 354–358.Google Scholar
  93. 93.
    Lerman S. NMR and fluorescence spectroscopy on the normal, aging, and cataractous lens, Lens Res 1983;1:175–197.Google Scholar
  94. 94.
    Lerman S. Psoralens and ocular effects in animals and man: in vivo monitoring of human ocular and cutaneous manifestations. J Natl Cancer Inst 1984;66:227–223.Google Scholar
  95. 95.
    Lerman S. Human lens fluorescence aging index. Lens Res 1988;5:23–31.Google Scholar
  96. 96.
    Lerman S. Radiant Energy and the Eye. Mac-millan, New York, 1980.Google Scholar
  97. 97.
    Lerman S. Ocular photoxicty. In Fraunfelder F, Davidson SI (eds): Recent Advances in Ophthalmology. Churchill Livingstone, New York, 1985, pp. 109–136.Google Scholar
  98. 98.
    Laser H, Hockwin O, Schieck A, Bialluch A. Investigations of the anterior eye segment by Scheimpflug photography using visible or UV light with volunteers of different age and with patients with various types of lens opacification. Lens Res 1988;5:7Google Scholar
  99. 99.
    Busin M, Spitznas M, Laser H, et al. In vivo evaluation of epikeratophakia lenses by means of Scheimpflug photography. Invest Ophthalmol Vis Sci 1988;29(suppl): 391.Google Scholar
  100. 100.
    Zeis, Oberkochen, Federal Republic of Germany. Analytisches System zur Untersuchung der vorderen Augenmedien nach Scheimpflug mit Bildanalyse, Geratehandbuch 1985;1.Google Scholar
  101. 101.
    Hockwin O, Wegener A. Syn- and cocatarac-togenesis: a system for testing lens toxicity. In: Concepts in Toxicology. Vol. 4. Karger, Basel, 1987, p. 241.Google Scholar
  102. 102.
    Niesei P, Müller D. Quantifizierung der senilen Katarakt im Spaltlampenbild des Zeiss SLC Messsystems. Klin Monatsbl Augen-heilkd 1988;192:173–175.CrossRefGoogle Scholar
  103. 103.
    Olbert D, Hockwin O, Baumgartner A, et al. Langzeit Beobachtungen an Linsen von Diabetikern mittels Linear-Densitometrie von Scheimpflug-Photographien. Klin Monatsbl Augenheilkd 1986;189:363.PubMedCrossRefGoogle Scholar
  104. 104.
    Smith JP, Dobbs RE, Knowles W, Hockwin O. Long-term follow-up of lens change with Scheimpflug photograpy in diabetic patients. Pressented at the American Academy of Ophthalmology 91st Annual Meeting, 1986, p. 77.Google Scholar
  105. 105.
    Dobbs RE, JP Smith, Chen T, et al. Long-term follow-up of lens changes with Scheimpflug photography in diabetics. Ophthalmology 1987;94:881–890.PubMedGoogle Scholar
  106. 106.
    Hockwin O, Weigelin E, Bauer M, Boutros G. Kontrollierte klinische Studie über die Wirksamkeit von Phakan (R) als Anti-Kataraktmedikament. Fortschr Ophthalmol 1982;79:179.PubMedGoogle Scholar
  107. 107.
    Weigelin E, Hockwin O. Bericht über eine zufallsverteilte, kontrollierte klinische Studie mit Phakan(R)/Phakolen(R). In Hockwin O (ed): Altern der Linse. Symposium Strasbourg. Mayr, Miesbach, 1982, p. 183.Google Scholar
  108. 108.
    Hockwin O. Welches sind die Beeinflussung-smoglichkeiten der Kataraktstehung aufgrund heutiger biochemischer Kenntnisse? Wo können Medikamente angreifen? Klin Monatsbl Augenheilkd 1985;186:455.PubMedCrossRefGoogle Scholar
  109. 109.
    Hockwin O, Dragomirescu V, Laser H, et al. Evaluation of the ocular safety of verapamil: Scheimpflug photography with densitometric image analysis in patients with hypertrophic cardiomyopathy (HOCM) subjected to long term therapy with high doses of verapamil. Ophthalmic Res 1984;16:264.PubMedCrossRefGoogle Scholar
  110. 110.
    Wegener A, Hockwin O. Animal models as a tool to detect the subliminal cataractogenic potential of drugs. In: Concepts in Toxicology. Vol. 4. Karger, Basel, 1987, p. 250.Google Scholar
  111. 111.
    Wegener A, Laser H, Hockwin O, Measurement of lens transparency changes in animals: comparison of the Topcon SL-45 combined with linear microdensitometry and the Zeiss SLC system. In: Concepts in Toxicology. Vol. 4. Karger, Basel, 1987, p. 263.Google Scholar
  112. 112.
    Lerman S. Observations on the prevention and medical treatment of cataracts. In Ginsberg SP (ed): Cataract and Intraocular Lens Surgery. Vol. 2. Aesculapius, Birmingham, Al, 1984, pp. 671–688.Google Scholar
  113. 113.
    Sasaki K, Sakamoto Y, Shibata T, Emori Y. Measurement of implanted IOL positioning using an image processing technique. Acta Soc Ophthalmol Jpn 1987;91:000–000.Google Scholar
  114. 114.
    Sasaki K, Sakamoto Y, Shibata T, et al. Measurement of post-operative IOL tilting and decentration using Scheimpflug images (in press).Google Scholar
  115. 115.
    Shibata T, Sakamoto Y, Nakaizumi H, Sasaki K. Clinical application of a new method for implanted IOL positioning. 1987;1:212–215.Google Scholar
  116. 116.
    Sasaki K, Karino K, Takizawa A, et al. Epidemiological survey of cataract in a local population. Jpn J Clin Ophthalmol 1987;41:763–767.Google Scholar
  117. 117.
    Sasaki K, Karino K, Kojima M, et al. Cataract survey in the local area using photographic documentation. Dev Ophthalmol 1987;15:28–36.PubMedGoogle Scholar
  118. 118.
    Chen TT, Hockwin O, Dobbs R, et al. Cataract epidemiological study: correlation of cataract morphology with health status. Graefes Arch Klin Exp Ophthalmol 1987;225:206.CrossRefGoogle Scholar
  119. 119.
    Chen TT, Hockwin O, Dobbs R, et al. Cataract and health status: a case control study. Opthalmic Res 1988;20:1–9.CrossRefGoogle Scholar
  120. 120.
    Eckerskorn U, Hockwin O, Müller-Breitenkamp R, et al. Evaluation of cataract related risk factors using detailed classification system and multivariate statistical methods. Dev Ophthalmol 1981;15:82–91.Google Scholar
  121. 121.
    Eckerskorn U, Hockwin O, Ohrloff C, et al. Klassifizierung von Linsentrübungen durch Bildanalyse on Scheimpflug Photographien. Spektrum Augenheilk 1987;1:297–301.Google Scholar
  122. 122.
    Dobbs RE, Lambrou F, Bates S, et al. Evaluation of lens changes in idiopathic epiretinal membrane (ERM) surgery. Lens Res 1988; 5:143.Google Scholar
  123. 124.
    Eckerskorn U, Hockwin O, Chen TT, et al. Contribution of cataract epidemiological studies with respect to the evaluation of catar-actogenic risk factors. In: Concepts in Toxicology. Vol. 4. Karger, Basel, 1987, p. 71.Google Scholar
  124. 125.
    Hockwin O, Dragomirescu V., Laser H, et al. Measuring lens transparency by Scheimpflug photography of the anterior eye segment: instrumentation and application to clinical and experimental ophthalmology. J Toxicol-Cutan Ocular Toxicol 1987;6:251–271.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Otto Hockwin
  • Kazuyuki Sasaki
  • Sidney Lerman

There are no affiliations available

Personalised recommendations