Wave Phenomena pp 231-248 | Cite as

Interfacial Waves in Hele-Shaw Cells of Liquid Crystal-Air Systems

  • Song Ling Yang
  • Zhong Cheng Liang
  • Ren Fan Shao
  • Lui Lam
Part of the Woodward Conference book series (WOODWARD)

Abstract

When a liquid is pushed by a less viscous fluid (e.g. air) in a thin linear cell, instability of the interface develops and a viscous finger is formed. This problem was first studied by SAFFMAN and TAYLOR [1] in theory and in experiment; it is thus called the Saffman-Taylor problem [2,3]. The cell in which the two fluids move consists of two plates with very small separation between them and is called a Hele-Shaw cell. The flow may be considered approximately two-dimensional. When the less viscous fluid has very small viscosity there is a single dimensionless control parameter [4,5],
$$\frac{1}{B} = 12\frac{{\mu U}}{T}{\left( {\frac{w}{b}} \right)^2}$$
where U is the velocity of the more viscous liquid at x = ∞ where the x axis is the long axis of the linear horizontal cell, w the width and b the thickness of the cell, T the interfacial tension, μ the viscosity of the more viscous liquid.

Keywords

Anisotropy Sulfuric Acid Phthalate Acoustics Dibutyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. Saffman and G.I. Taylor: Proc. Roy. Soc. London, Ser. A 245, 312 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    D. Bensimon, L.P. Kadanoff, S. Liang, B.I. Shraiman and C. Tang: Rev. Mod. Phys. 58, 977 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    P.G. Saffman: J. Fluid Mech. 173, 73 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  4. G.M. Homsy: Ann. Rev. Fluid Mech. 19, 271 (1987).ADSCrossRefGoogle Scholar
  5. 4.
    P. Tabeling, G. Zocchi and A. Libchaber: J. Fluid Mech 177, 67 (1987).ADSCrossRefGoogle Scholar
  6. 5.
    D. Bensimon: Phys. Rev. A 33, 1302 (1986).ADSGoogle Scholar
  7. 6.
    S. Liang: Phys. Rev. A 33, 2663 (1986).ADSCrossRefGoogle Scholar
  8. 7.
    A.J. DeGregoria and L.W. Schwartz: Phys. Fluids 28, 2313 (1985).ADSCrossRefGoogle Scholar
  9. 8.
    C.W. park and G.M. Homsy: Phys. Fluids 28, 1583 (1985).ADSCrossRefGoogle Scholar
  10. 9.
    J. Nittman, G. Daccord and H. E. Stanley: Nature 314, 141 (1985).ADSCrossRefGoogle Scholar
  11. 10.
    E. Ben-Jacob, R. Godbey, N.D. Goldenberg, J. Koplik, H. Levine, T. Mueller and L.M. Sander: Phys. Rev. Lett. 55, 1315 (1985).ADSCrossRefGoogle Scholar
  12. 11.
    A. Buka, J. Kertesz and T. Vicsek: Nature 323, 424 (1986).ADSCrossRefGoogle Scholar
  13. 12.
    A. Buka, P. Palffy-Muhoray and Z. Racz: Phys. Rev.A 36, 3984 (1987).ADSCrossRefGoogle Scholar
  14. 13.
    R.F. Shao, H. Liu and L. Lam: J. Nanjing Normal Univ. (Natural Sci.) 2, 59 (1988).Google Scholar
  15. 14.
    S. Zheng, R.F. Shao, L. Lam and Z.M. Sun: paper presented at the Centenary Conference of Liquid Crystal Discovery, Beijing, June 27-July 1, 1988.Google Scholar
  16. 15.
    L. Lam: in this volume.Google Scholar
  17. 16.
    H. Lamb: Hydrodynamics (Cambridge Univ. Press, Cambridge, 1932 ).MATHGoogle Scholar
  18. 17.
    C.W. Park and G.M. Homsy: J. Fluid Mech. 139, 291 (1984).ADSMATHCrossRefGoogle Scholar
  19. 18.
    M.J. Stephen and J.P. Straley: Rev. Mod. Phys. 46, 617 (1974).ADSCrossRefGoogle Scholar
  20. 19.
    A.T. Dorsey and O. Martin: Phys. Rev. A 35, 3989 (1987).MathSciNetADSCrossRefGoogle Scholar
  21. 20.
    J.V. Maher: Phys. Rev. Lett. 54, 1498 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Song Ling Yang
  • Zhong Cheng Liang
  • Ren Fan Shao
  • Lui Lam

There are no affiliations available

Personalised recommendations