Skip to main content

A General Branch-and-Bound Formulation for AND/OR Graph and Game Tree Search

  • Chapter
Search in Artificial Intelligence

Part of the book series: Symbolic Computation ((1064))

Abstract

This paper presents a general procedure for finding an optimal solution tree of an acyclic AND/OR graph with monotone cost functions. Due to the relationship between AND/OR graphs and game trees, it can also be used as a game tree search procedure. Seemingly disparate procedures like AO*, SSS*, alpha-beta, B* are instantiations of this general procedure. This sheds new light on their interrelationships and nature, and simplifies their correctness proofs. Furthermore, the procedure is applicable to a very large class of problems, and thus provides a way of synthesizing algorithms for new applications. The procedure searches an AND/OR graph in a top-down manner (by selectively developing various potential solutions) and can be viewed as a general branch-and-bound procedure.

This chapter is a revised version of Chapter 6 of the first author’s 1982 PhD dissertation [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bagchi and A. Mahanti, Search Algorithms Under Different Kinds of Heuristics–A Comparative Study, JACM, pp. 1–21, January 1983.

    Google Scholar 

  2. A. Bagchi and A. Mahanti, Admissible Heuristic Search in AND/OR Graphs, Theoretical Computer Science 24, pp. 207–219, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bagchi and A. Mahanti, Three Approaches to Heuristic Search in Networks, JACM, pp. 1–27, January 1985.

    Google Scholar 

  4. A. Barr and E. A. Feigenbaum, The Handbook of Artificial Intelligence, Vol I, William Kaufman, Inc., Los Altos, CA, 1981.

    MATH  Google Scholar 

  5. H. Berliner, The B Tree Search Algorithm: A Best-First Proof Procedure, Artificial Intelligence 12, pp. 23–40, 1979.

    Article  MathSciNet  Google Scholar 

  6. T. Ibaraki, The Power of Dominance Relations in Branch and Bound Algorithms, J. ACM 24, pp. 264–279, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Ibaraki, Branch-and-Bound Procedure and State-Space Representation of Combinatorial Optimization Problems, Inform and Control 36, pp. 1–27, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. E. Knuth and R. W. Moore, An Analysis of Alpha-Beta Pruning, Artificial Intelligence 6, pp. 293–326, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. H. Kohler and K. Steiglitz, Characterization and Theoretical Corvparision of Branch and Bound Algorithms for permutation problems, J-ACM 21, pp. 140–156, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Kumar, A Unified Approach to Problem Solving Search Procedures, Ph.D. thesis, Dept. of Computer Science, University of Maryland, College Park, December, 1982.

    Google Scholar 

  11. V. Kumar, A General Bottom-up Procedure for Searching And/Or Graphs., Proc. National Conference on Artificial Intelligence (AAAI84), Austin, Texas, pp. 182–187, 1984.

    Google Scholar 

  12. V. Kumar, Branch-and-Bound Search, pp. 1000–1004 in Encyclopedia of Artificial Intelligence, ed. S.C. Shapiro, Wiley-Interscience, 1987.

    Google Scholar 

  13. V. Kumar and L. Kanal, A General Branch and Bound Formulation for Understanding and Synthesizing And/Or Tree Search Procedures, Artificial Intelligence 21, 1, pp. 179–198, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Kumar and L. N. Kanal, The CDP: A Unifying Formulation for Heuristic Search, Dynamic Programming and Branch & Bound, in Search in Artificial Intelligence, ed. Kanal and Kumar, Springer-Verlag, 1988.

    Google Scholar 

  15. A. Martelli, On the Complexity of Admissible Search Algorithms, Artificial Intelligence 8, pp. 1–13, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Martelli and U. Montanari, Additive AND/OR Graphs, Proc. Third Internat. Joint Conf. on Artif. Intell., pp. 1–11, 1973.

    Google Scholar 

  17. A. Martelli and U. Montanari, Optimizing Decision Trees Through Heuristically Guided Search, Comm. ACM 21, pp. 1025–1039, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Mero, Some Remarks on Heuristic Search Algorithms, IJCAI-81, Vancouver, Canada, pp. 572–574, 1981.

    Google Scholar 

  19. L. G. Mitten, Branch and Bound Methods: General Formulations and Properties, Operations Research 18, pp. 23–34, 1970 Errata in Operations Research, 19 pp 550, 1971.

    Google Scholar 

  20. D. S. Nau, V. Kumar, and L. N. Kanal, General Branch-and-Bound and its Relation to A and AO, Artificial Intelligence 23, pp. 29–58, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Nilsson, Searching Problem Solving and Game Playing Trees for Minimum Cost Solutions, in A.J.H. Morrel(ed.), Information processing-68, 1968.

    Google Scholar 

  22. N. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill Book Company, New York, 1971.

    Google Scholar 

  23. N. Nilsson, Principles of Artificial Intelligence, Tioga Publ. Co., Palo Alto. CA, 1980.

    MATH  Google Scholar 

  24. J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.

    Google Scholar 

  25. A. L. Reibman and B. W. Ballard, Non-Minimax Search Strategies for Use Against Fallible Opponents, Proc. of AAAI, pp. 338–342, 1983.

    Google Scholar 

  26. J. R. Slagle, Heuristic Search Program, in R. Banerji and M. Mesarovic (eds.), Theoretical Approaches to Non-Numerical Problem Solving., New York, Springer Verlag, 1970.

    Google Scholar 

  27. G. C. Stockman, A Problem-Reduction Approach to the Linguistic Analysis of Waveforms, Ph.D. Dissertation, TR-538, Comp. Sci. Dept., Univ. of MD, College Park, MD, May 1977.

    Google Scholar 

  28. G. C. Stockman, A Minimax Algorithm Better than Alpha-Beta?, Artificial Intelligence 12, pp. 179–196, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. C. Stockman and L. N. Kanal, Problem Reduction Representation for the Linguistic Analysis of Waveforms., IEEE Trans. on PAMI 5, 3, pp. 287–298, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kumar, V., Nau, D.S., Kanal, L.N. (1988). A General Branch-and-Bound Formulation for AND/OR Graph and Game Tree Search. In: Kanal, L., Kumar, V. (eds) Search in Artificial Intelligence. Symbolic Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8788-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8788-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8790-9

  • Online ISBN: 978-1-4613-8788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics