Skip to main content

Backtrack-Free and Backtrack-Bounded Search

  • Chapter
Search in Artificial Intelligence

Part of the book series: Symbolic Computation ((1064))

Abstract

Conditions are identified under which bounds can be placed on the amount of backtracking required to solve constraint satisfaction search problems. These relate the structure of the problem to the structure of the search sequence. Particular attention is paid to tree-structured constraint satisfaction problems. Problem complexity is shown to have a bound exponential in the size of the largest biconnected component of the problem’s constraint graph.

This material is based in part upon work supported by the National Science Foundation under Grants No. TICS 80-03307 and DCR. 8601209. The chapter is largely based on two papers [8, 9] which appeared in the Journal of the ACM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berge, C. Graphs and Hypergraphs. North Holland, London, 1973.

    MATH  Google Scholar 

  2. Bitner, J.R., and Reingold, E.M. Backtrack programming techniques. Commun. ACM 18, 11 (Nov. 1975), 651–656.

    Article  MATH  Google Scholar 

  3. Bobrow, D.G., and Raphael, B. New programming languages for artificial intelligence research. Comput. Surv. 6, 3 (Sept. 1974), 153–174.

    Article  MATH  Google Scholar 

  4. Brown, C.A., and Purdom, P.W. Jr., How to search efficiently. In Proceedings of the 7th International Joint Conference on Artificial Intelligence ( Vancouver, Canada ), 1981, pp. 588–594.

    Google Scholar 

  5. Dechter, R., and Pearl, J. Generating heuristics for constraint-satisfaction problems. In this volume.

    Google Scholar 

  6. Fikes, R.E. REF-ARF: A system for solving problems stated as procedures. Artif. Intell. 1, 1 (1970), 27–120.

    Article  MathSciNet  MATH  Google Scholar 

  7. Freuder, E.C. Synthesizing constraint expressions. Commun. ACM 21, 11 (Nov. 1978), 958–966.

    Article  MathSciNet  MATH  Google Scholar 

  8. Freuder, E.C. A sufficient condition for backtrack-free search. J. ACM 29, 1 (Jan. 1982), 24–32.

    Article  MathSciNet  MATH  Google Scholar 

  9. Freuder, E.C. A sufficient condition for backtrack-bounded search. J. ACM 32, 4 (Oct. 1985), 755–761.

    Article  MathSciNet  MATH  Google Scholar 

  10. Freuder, E.C., and Quinn, M.J. Taking advantage of stable sets of variables in constraint satisfaction problems. In Proceedings of the 9th International Joint Conference on Artificial Intelligence ( Los Angeles, USA ), 1985, pp. 1076–1078.

    Google Scholar 

  11. Gaschnig, J. Experimental case studies of backtrack vs. Waltz-type vs. new algorithms for satisficing assignment problems. Proc. 2nd Nat. Conf. of the Canadian Society for Computational Studies of Intelligence, Toronto, Ontario, 1978, pp. 268–277.

    Google Scholar 

  12. Haralick, R.M., Davis, L., Rosenfeld, A., and Milgram, D. Reduction operations for constraint satisfaction. Inf. Sci. 14 (1978), 199–219.

    Article  MathSciNet  MATH  Google Scholar 

  13. Haralick, R.M. and Elliott, G.L. Increasing tree search efficiency for constraint satisfaction problems. Artif. Intel]. 14, 3 (Oct. 1980), 263–313.

    Article  Google Scholar 

  14. Haralick, R.M., and Shapiro, L.G. The consistent labeling problem: Part I, IEEE Trans. Pattern Anal. Machine Intell. PAMI-1, IEEE, New York, 2 (Apr. 1979), pp. 173–184.

    Google Scholar 

  15. Knuth, D.E. Estimating the efficiency of backtrack programs. Math Comput. 29 (Jan. 1975), 121–136.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mackworth, A.K. Consistency in networks of relations. Artif. Intell. 8 (1977), 99–118.

    Article  MATH  Google Scholar 

  17. Mackworth, A.K., and Freuder, E.C. The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artif. Intel]. 25, 1 (Jan. 1985).

    Article  Google Scholar 

  18. Matula, D.W. A min-max theorem for graphs with application to graph coloring. SIAMRev. 10 (1968), 481–482.

    Google Scholar 

  19. Matula, D.W., Marble, G. and Isaacson, J.D. Graph coloring algorithms. In Graph Theory and Computing, R.C. Read, Ed., Academic Press, New York, 1972, pp. 109–122.

    Google Scholar 

  20. Montanari, U. Networks of constraints: Fundamental properties and applications to picture processing. Inf. Sci. 7, 2 (Apr. 1974), 95–132.

    Article  MathSciNet  Google Scholar 

  21. Nilsson, N.J. Problem-Solving Methods in Articial Intelligence, McGraw-Hill, New York, 1971.

    Google Scholar 

  22. Nudel, B. Consistent-labeling problems and their algorithms: expected-complexities and theory-based heuristics. Artif. Intell. 21, 1 and 2 (March 1983).

    Article  Google Scholar 

  23. Purdom, P.W. Tree size by partial backtracking. SIAM J. Comput. 7 (1978), 481–491.

    Article  MathSciNet  MATH  Google Scholar 

  24. Purdom, Jr., P.W. Search rearrangement backtracking and polynomial average time. Artif. Intell. 21, 1 and 2 (March 1983), 117–133.

    Article  Google Scholar 

  25. Reingold, E.M., Nievergelt, J., and Deo, N. Combinatorial Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  26. Szekeres, G., and Wilf, H.S. An inequality for the chromatic number of a graph. J. Comb. Theory 4 (1968), 1–3.

    Article  MathSciNet  Google Scholar 

  27. Tarjan, R.E. Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972), 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  28. Tenenbaum, J.M., and Barrow, H.G. IGS: A paradigm for integrating image segmentation and interpretation. In Pattern Recognition and Artificial Intelligence, C.H. Chen, Ed., Academic Press, New York, 1976, pp. 472–507.

    Google Scholar 

  29. Ullman, J.R. Associating parts of patterns. Inf. Control 9 (1966), 583–601.

    Article  Google Scholar 

  30. Waltz, D.L. Understanding line drawings of scenes with shadows. In The Psychology of Computer Vision, Ph.D. Winston, Ed., McGraw-Hill, New York, 1975, pp. 19–91.

    Google Scholar 

  31. Wells, M.B. Elements of Combinatorial Computing. Pergamon Press, New York, 1971.

    MATH  Google Scholar 

  32. Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall, Englewood Cliffs, NJ, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Freuder, E.C. (1988). Backtrack-Free and Backtrack-Bounded Search. In: Kanal, L., Kumar, V. (eds) Search in Artificial Intelligence. Symbolic Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8788-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8788-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8790-9

  • Online ISBN: 978-1-4613-8788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics