Skip to main content

The Effect of the Magnitude of the Disordered Phase Temperature Range on the Given Phase Transition in Liquid Crystals

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 5))

Abstract

The difference between phases separated by a given phase transition can be characterized by one particular physical property called the order parameter. For example, the order parameter for distinguishing a ferromagnetic phase from a paramagnetic phase is the magnetization. Consequently, the order parameter (ψ) is zero for the disordered phase (T>TC) and nonzero for the ordered phase (T < TC). Here T is the transition temperature. Depending on the way ψ approaches zero at T = TC, we have two types of phase transitions. The one with ψ asymptotically approaching zero as T approach T C is a continuous transition; otherwise, the transition is a first order one. For a continuous transition, the divergence of the order parameter-order parameter correlation length at T = TC results in anomalous behavior in many physical properties, e.g., heat capacity (C), susceptibility (χ), etc. For example, in the limit where the reduced temperature t = ((T-TC)/TC) approaches zero, the critical exponent γ related to the diverging behavior of the susceptibility (χ) is defined as

$$ \gamma \equiv - \mathop{{\lim }}\limits_{{t \to 0}} \,{\text{en}}\,x{\text{/en}}\,{\text{t}} $$

. Consequently, in the temperature range sufficiently close to TC, the susceptibility can be expressed as

$$\chi {\text{ = D}}{{{\text{t}}}^{{ - \gamma }}}$$

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. For general reference of critical phenomena, see “Introduction to Phase Transition and Critical Phenomena”, H.E. Stanley (Oxford University Press) 1971.

    Google Scholar 

  2. K.G. Wilson, Phys. Rev. B 4, 3174, 3184 (1971).

    Article  ADS  MATH  Google Scholar 

  3. 3184.

    Article  ADS  MATH  Google Scholar 

  4. K.G. Wilson and M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972);

    Article  ADS  Google Scholar 

  5. K.G. Wilson and J. Kogut, Phys. Reports 12, 75 (1974).

    Article  ADS  Google Scholar 

  6. “The Physics of Liquid Crystals”, P.G. de Gennes (Clarendon Press, Oxford) 1974;

    Google Scholar 

  7. “Liquid Crystals”, S. Chandrasekhar (Cambridge University Press) 1977.

    Google Scholar 

  8. “Smectic Liquid Crystals”, G.W. Gray and J.W. Goodby, (Leonard Hill) 1984.

    Google Scholar 

  9. B.I. Halperin and D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  10. R.J. Birgeneau and J.D. Litster, J. Phys. Lett. (Paris) 39, 339 (1978).

    Google Scholar 

  11. R.B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, J. Phys. Lett. (Paris) 36, 69 (1975).

    Article  Google Scholar 

  12. S. Dumrongrattana and C.C. Huang, Phys. Rev. Lett. 56, 464 (1986);

    Article  ADS  Google Scholar 

  13. C.C. Huang and S. Dumrongrattana, Phys. Rev. A. 34, 5020 (1986).

    Article  ADS  Google Scholar 

  14. P.G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973).

    Article  Google Scholar 

  15. K. Kobayashi, Mol. Cryst. Liq. Cryst. 13, 137 (1971);

    Article  Google Scholar 

  16. K. Kobayashi, Phys. Lett. 31A, 125 (1970);

    ADS  Google Scholar 

  17. K. Kobayashi, J. Phys. Soc. Jpn. 29, 101 (1970).

    Article  ADS  Google Scholar 

  18. W.L. McMillan, Phys. Rev. A4., 1238 (1971).

    Google Scholar 

  19. J. Thoen, H. Marynissen, and W. Van Dael, Phys. Rev. Lett. 52, 204 (1984).

    Article  ADS  Google Scholar 

  20. B.M. Ocko, R.J. Birgeneau, J.D. Litster, and M.E. Neubert, Phys. Rev. Lett. 52, 208 (1984).

    Article  ADS  Google Scholar 

  21. T.C. Lubensky, J. de Chimie Phys. 80, 31 (1983) and references found therein.

    Google Scholar 

  22. D.L. Johnson, J. de Chimie Phys. 80, 45 (1983) and references found therein.

    Google Scholar 

  23. C.W. Garland, M. Meichle, B.M. Ocko, A.R. Kortan, C.R. Safinya, L.J. Yu, J.D. Litster and R.J. Birgeneau, Phys. Rev. A. 27, 3234 (1983) and references found therein.

    Article  ADS  Google Scholar 

  24. C.A. Schantz and D.L. Johnson, Phys. Rev. A 17, 1054 (1978).

    Article  Google Scholar 

  25. J.D. LeGrange and J.M. Mochel, Phys. Rev. Lett. 45, 35 (1980);

    Article  ADS  Google Scholar 

  26. Phys. Rev. A23, 3215 (1981).

    Article  ADS  Google Scholar 

  27. D. Djurek, J. Baturic-Rubcic, and K. Franulovic, Phys. Rev. Lett. 33, 1126 (1974).

    Article  ADS  Google Scholar 

  28. R.J. Birgeneau, C.W. Garland, G.B. Kasting, and B.M. Ocko, Phys. Rev. A24, 2624 (1981).

    Article  ADS  Google Scholar 

  29. C.W. Garland, G.B. Kasting, and K.J. Lushington, Phys. Rev. Lett. 43, 1420, (1979)

    Article  ADS  Google Scholar 

  30. D.L. Johnson, C.F. Hayes, R.J. DeHoff, and C.A. Shantz, Phys. Rev. B18, 4902 (1978).

    Article  ADS  Google Scholar 

  31. I. Hatta and T. Nokayama, Mol. Cryst. Liq. Cryst. 66, 417 (1981).

    Article  Google Scholar 

  32. J.M. Viner and C.C. Huang, Solid State Commun. 39, 789 (1981).

    Article  ADS  Google Scholar 

  33. D. Brisbin, R. DeHoff, T.E. Lockhart, and D.L. Johnson, Phys. Rev. Lett. 43, 1171 (1979).

    Article  ADS  Google Scholar 

  34. G.B. Kasting, C.W. Garland, and K.J. Lushington, J. Phys (Paris) 41, 879 (1980).

    Article  Google Scholar 

  35. J. Thoen, H. Marynissen, and W. Van Dael, Phys. Rev. A26, 2886 (1982).

    Article  ADS  Google Scholar 

  36. E.E. Gorodetskii and V.M. Zaprudskii, Zh. Eksp. Teor. Fiz. 72, 2299 (1977)

    Google Scholar 

  37. E.E. Gorodetskii and V.M. Zaprudskii, (Sov. Phys. JETP 45, 1209 (1977)).

    ADS  Google Scholar 

  38. S.T. Islander and W. Zimmermann, Jr., Phys. Rev. A 7, 188 (1973).

    Article  ADS  Google Scholar 

  39. The cross over from a tricritical-like behavior to an ordinary mean-field-like behaviour can be seen clearly in the temperature dependence of the tilt-angle below the SmA - SmC* transition of DOBAMBC. See ref. 40.

    Google Scholar 

  40. Summary of former results on the SmA-SmC transition can be found in Ref. 34.

    Google Scholar 

  41. C.C. Huang and J.M. Viner, Phys. Rev. A 25, 3385 (1982).

    Article  ADS  Google Scholar 

  42. C.C. Huang and J.M. Viner, “Liquid Crystals and Ordered Fluid” Vol. 4 Ed. by A.C. Griffin and J.F. Johnson (Plenum) 1984.

    Google Scholar 

  43. R.J. Birgeneau, C.W. Garland, A.R. Kortan, J.D. Litster, M. Meichle, B.M. Ocko, C. Rosenblatt, L.J. Yu, and J. Goodby, Phys. Rev. A 27, 1251 (1983).

    Article  ADS  Google Scholar 

  44. C.C. Huang and S.C. Lien, Phys. Rev. A 31, 2621 (1985) and references found therein.

    Article  ADS  Google Scholar 

  45. S. Dumrongrattana, G. Nounesis, and C.C. Huang, Phys. Rev. A 33, 2181 (1986); C.C. Huang, Mol. Cryst. Liq. Cryst. (in press).

    Article  ADS  Google Scholar 

  46. S.C. Lien, J.M. Viner, C.C. Huang, and N.A. Clark, Mol. Cryst. Liq. Cryst. 100, 145 (1983).

    Article  Google Scholar 

  47. S.C. Lien, C.C. Huang, and J.W. Goodby, Phys. Rev. A 29, 1371 (1984).

    Article  ADS  Google Scholar 

  48. S. Dumrongrattana, C.C. Huang, G. Nounesis, S.C. Lien, and J.M. Viner, Phys. Rev. A. 34, 5010 (1986).

    Article  ADS  Google Scholar 

  49. M. Meichle and C.W. Garland, Phys. Rev. A 27, 2624 (1983).

    Article  ADS  Google Scholar 

  50. S.C. Lien, C.C. Huang, T. Carlsson, I. Dahl, and S.T. Lagerwall, Mol. Cryst. Liq. Cryst. 108, 148 (1984).

    Article  Google Scholar 

  51. J. Theon and G. Seynhaeve, Mol. Cryst. Liq. Cryst. 127, 229 (1985).

    Article  Google Scholar 

  52. C.C. Huang and S.C. Lien, in “Multicritical Phenomena”, Vol. 106, of the Proceedings of the North Atlantic Treaty Organization Advanced Studies Institute, ed. by R. Pynn and A. Skjeltorp (Plenum, N.Y. 1984). Ser. B, p. 73.

    Chapter  Google Scholar 

  53. R. Pindak, D.E. Moncton, S.C. Davey, and J.W. Goodby, Phys. Rev. Lett. 46, 1135 (1981).

    Article  ADS  Google Scholar 

  54. C.C. Huang, J.M. Viner, R. Pindak, and J.W. Goodby, Phys. Rev. Lett. 46, 1289, (1981).

    Article  ADS  Google Scholar 

  55. J.M. Viner, D. Lamey, C.C. Huang, R. Pindak, and J.W. Goodby, Phys. Rev. A 28, 2433 (1983).

    Article  ADS  Google Scholar 

  56. R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 48, 1625 (1982).

    Article  ADS  Google Scholar 

  57. C. Rosenblatt and J.T. Ho, Phys. Rev. A 26, 2293 (1982).

    Article  ADS  Google Scholar 

  58. G. Nounesis, C.C. Huang, and J.W. Goodby, Phys. Rev. Lett. 56, 1712 (1986)

    Article  ADS  Google Scholar 

  59. G. Poeti, E. Fanelli, and D. Guillon, Mol. Cryst. Liq. Cryst. Lett. 82, 107 (1982).

    Article  Google Scholar 

  60. C.C. Huang, G. Nounesis and D. Guillon, Phys. Rev. A. 33, 2602 (1986).

    Article  ADS  Google Scholar 

  61. J.W. Goodby and G.W. Gray, J. Phys. (Paris) Coll. 37, C3–17 (1976).

    Google Scholar 

  62. T. Pitchford, G. Nounesis, S. Dumrongrattana, J.M. Viner, C.C. Huang, and J.W. Goodby, Phys. Rev. A. 32, 1938 (1985).

    Article  ADS  Google Scholar 

  63. F.J. Wegner, Phys. Rev. B 5, 4529 (1972).

    Article  ADS  Google Scholar 

  64. C.C. Huang, Solid State Commun. 43, 883 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Huang, C.C. (1987). The Effect of the Magnitude of the Disordered Phase Temperature Range on the Given Phase Transition in Liquid Crystals. In: Ericksen, J.L., Kinderlehrer, D. (eds) Theory and Applications of Liquid Crystals. The IMA Volumes in Mathematics and Its Applications, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8743-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8743-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8745-9

  • Online ISBN: 978-1-4613-8743-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics