Skip to main content

The Mean Field Bound for the Order Parameter of Bernoulli Percolation

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 8))

Abstract

We consider a general, translation invariant bond percolation model on ℤd with bonds characterized by couplings (Jx| X∈ℤ d ) and an inverse temperature parameter tf, with nontrivial critical value v c. We prove several inequalities including: (Da differential inequality for the infinite cluster density, P(v); and (2) an inequality relating the backbone density, Q(v), to p(v) and the expected size of finite clusters, χ’(v). If the above quantities exhibit critical scaling with exponents “defined” by P(v) ~ | vv c |β, Q(v) ~ | vv c |βQ, and χ’(v) ~ |vv c|-γ’ as vv c these inequalities imply the mean field bounds: β ≤ 1 and 2β ≤ βQ β + γ’. Furthermore, a magnetic backbone exponent, δQ, is defined analogously to the standard magnetic backbone exponent, δ. Again assuming critical scaling, our inequalities also imply the mean field bounds δ ≥ 2δQ and δQ ≥ 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. T. Chayes and L. Chayes, “Inequality for the infinite cluster density in Bernoulli percolation,” Phys. Rev. Lett. 56, 1619–1622 (1986).

    Article  MathSciNet  Google Scholar 

  2. G. R. Grimmett, M. Keane and J. M. Marstrand, “On the connectedness of a random graph,” Math. Proc. Camb. Phil Soc. 96, 151–166 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Schulman, “Long-range percolation in one dimension,” J. Phys. A: Math. Gen. 16, L639–641 (1983).

    Article  MathSciNet  Google Scholar 

  4. C. M. Newman and L Schulman, “One-dimensional 1/|j-i|s percolation models: the existence of a transition for s ≤ 2,” to appear in Commun. Math. Phys.

    Google Scholar 

  5. M Aizenman and C. M. Newman, “Discontinuity of the percolation density in onedimensional 1/|x-y|2 percolation models,” preprint.

    Google Scholar 

  6. M. Aizenman, J. T. Chayes, L. Chayes and C. M. Newman, in preparation.

    Google Scholar 

  7. M. Aizenman, J. T. Chayes, L. Chayes, J. Z. Imbrie and C. M. Newman, in preparation.

    Google Scholar 

  8. M. Aizenman, H. Kesten and C. M. Newman, in preparation.

    Google Scholar 

  9. L. Russo, “On the critical percolation probabilities,” Z. Wahrsh. verw Gebiete 56, 229–237 (1981).

    Article  MATH  Google Scholar 

  10. J. van den Berg and H. Kesten, “Inequalities with applications to percolation and reliability theory,” to appear in Adv. Appl. Probat.

    Google Scholar 

  11. J. van den Berg and U. Fiebig, “On a combinatorial conjecture concerning disjoint occurrence of events,” to appear in Ann. Probab.

    Google Scholar 

  12. R. Peierls, “Ising’s model of ferromagnetism,” Proc. Camb. Phil. Soc. 32, 477–481 (1936).

    Article  MATH  Google Scholar 

  13. S. R. Broadbent and J. M. Hammersley, “Percolation processes I: crystals and mazes,” Proc. Camb. Phil. Soc. 53, 629–641 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Russo, “An approximate zero-one law,” Z. Wahrsh. verw Gebiete 61, 129–139 (1982).

    Article  MATH  Google Scholar 

  15. R. Durrett, “Some general results concerning the critical exponents of percolation processes,” Z. Wahrsh. verw Gebiete 69, 421 (1984).

    Article  MathSciNet  Google Scholar 

  16. B. J. Last and D. J. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27, 1719–1721 (1971).

    Article  Google Scholar 

  17. J. van den Berg and M. Keane, “On the continuity of the percolation probability function,” Contemp. Math. 26, 61–65 (1984).

    MATH  Google Scholar 

  18. J. T. Chayes and L. Chayes, “Bulk transport properties and exponent inequalities for random resistor and flow networks,” to appear in Commun. Math. Phys.

    Google Scholar 

  19. H. Kesten, Percolation Theory for Mathematicians, (Birkhäuser, Boston 1982).

    MATH  Google Scholar 

  20. J. T. Chayes, L. Chayes and C. M. Newman, “Bernoulli percolation above threshold: an invasion percolation analysis,” to appear in Ann. Probab.

    Google Scholar 

  21. R. B. Griffiths, “Correlations in Ising ferromagnets II: external magnetic fields,” J. Math. Phys. 8, 484–489 (1967).

    Article  Google Scholar 

  22. C. M. Fortuin and P. W. Kasteleyn, “On the random cluster model I: introduction and relation to other models,” Physica 57, 536–564 (1971).

    Article  MathSciNet  Google Scholar 

  23. M. Aizenman and D. Barsky, in preparation.

    Google Scholar 

  24. C. M. Newman, lecture presented and announcement circulated at the 46th Statistical Mechanics Meeting, Rutgers University (December, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chayes, J.T., Chayes, L. (1987). The Mean Field Bound for the Order Parameter of Bernoulli Percolation. In: Kesten, H. (eds) Percolation Theory and Ergodic Theory of Infinite Particle Systems. The IMA Volumes in Mathematics and Its Applications, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8734-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8734-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8736-7

  • Online ISBN: 978-1-4613-8734-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics