Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 99))

Abstract

The biological half-life of a chemical is the time required for its concentration in an organism to decline by 50%. This value is described in the relationship:

$$ {{T}_{{1/2}}} = \frac{{0.693}}{{{{K}_{e}}}} $$

where T 1/2 is the biological half-life, and K e the clearance coefficient. Both T 1/2 and K e have important applications in chemical hazard assessments. Contaminant dynamics models generally include a coefficient to describe the clearance rate of a chemical (Thomann 1981; Bruggeman 1982). K e can be used to estimate the bioconcentration factor (BCF) of a persistent chemical that does not attain steady-state concentration in fish during a study. Using the kinetics approach, another experiment could determine the chemical uptake coefficient (K 1) by exposing fish to a constant chemical concentration, and this factor can be estimated as BCF = K 1/K e (Oliver and Niimi 1985). Half-lives can also be used to assess the relative importance of the bioconcentration and biomagnification pathways for accumulation of contaminants by fish (Niimi 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison RF, Zinck ME, Leahy JR (1976) Metabolism of single and combined doses of 14C-aldrin and 3H p,p′ -DDT by Atlantic salmon (Salmo salar) fry. J Fish Res Bd Can 33:2073–2076 (51).

    CAS  Google Scholar 

  • Anderson JW, Neff JM, Cox BA, Tatem HE, Hightower GM (1974) The effects of oil on estuarine animals toxicity, uptake and depuration, respiration. In: Vernberg FJ, Vernberg WB (eds) Pollution and physiology of marine organisms. Academic Press, New York, pp 285–310 (160).

    Google Scholar 

  • Appleton HT, Sikka HC (1980) Accumulation, elimination, and metabolism of dichlorobenzidine in the bluegill sunfish. Environ Sci Technol 14:50–54 (169).

    CAS  Google Scholar 

  • Argyle RL, Williams GC, Dupree HK (1973) Endrin uptake and release by fingerling channel catfish (Ictalurus punctatus). J Fish Res Bd Can 30:1743–1744 (82).

    CAS  Google Scholar 

  • ASTM (1978) Criteria and rationale for decision making in aquatic hazard evaluation (third draft). In: Cairns J, Dickson KL, Maki AW (eds) Estimating the hazard of chemical substances to aquatic life. ASTM STP 657, Philadelphia, PA, pp 202–237.

    Google Scholar 

  • Bahner LH, Wilson AJ, Sheppard JM, Patrick JM, Goodman LR, Walsh GE (1977) Kepone bioconcentration, accumulation, loss, and transfer through estuarine food chains. Chesapeake Sci 18:299–308 (92).

    CAS  Google Scholar 

  • Baptist JP, Hoss DE (1965) Accumulation and retention of radionuclides by marine fish. US Fish Wildl Sery Circ 204. Cited in Baptist et al. (1970) (40).

    Google Scholar 

  • Baptist JP, Hoss DE, Lewis CW (1970) Retention of 51Cr, 59Fe, 60Co, 65Zn, 85Sr, 95Nb, 141In, and 131I by the Atlantic croaker (Micropogon undulatus). Health Phys 18:141–148 (10).

    PubMed  CAS  Google Scholar 

  • Barrows ME, Petrocelli SR, Macek KJ, Carroll JJ (1980) Bioconcentration and elimination of selected water pollutants by bluegill sunfish (Lepomis macrochirus). In: Harque R (ed) Dynamics, exposure and hazard assessment of toxic chemicals. Ann Arbor Sci Publ, Ann Arbor, MI, pp 379–392 (1).

    Google Scholar 

  • Bender ME (1969) Uptake and retention of malathion by the carp. Prog Fish-Cult 31:155–159 (96).

    CAS  Google Scholar 

  • Bengtsson B-E (1980) Long-term effects of PCB (Clophen A50) on growth, reproduction and swimming performance in the minnow, Phoxinus phoxinus. Water Res 14:681–687 (145).

    CAS  Google Scholar 

  • Bionomics, Inc. (1972) Accumulation and persistence of 14C-carbofuran residues by blue-gill (Lepomis macrochirus) continuously exposed to the chemical in water. Cited in NRCC (1979) (60).

    Google Scholar 

  • Bishop WE, Maki AW (1980) A critical comparison of two bioconcentration test methods. In: Eaton JG, Hendricks AC (eds) Aquatic toxicology. ASTM STP 707, Philadelphia, PA, pp 6–77 (68).

    Google Scholar 

  • Branson DR, Blau GE, Alexander HC, Neely WB (1975) Bioconcentration of 2,2′,4,4′tetrachlorobiphenyl in rainbow trout as measured by an accelerated test. Trans Am Fish Soc 104:785–792 (135).

    CAS  Google Scholar 

  • Branson DR, Takahashi IT, Parker WM, Blau GE (1985) Bioconcentration kinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rainbow trout. Environ Toxicol Chem 4:779–788 (148).

    CAS  Google Scholar 

  • Brett JR (1979) Environmental factors and growth. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, Vol. 8. Academic Press, New York, p 599–675.

    Google Scholar 

  • Brett JR, Shelbourn JE, Shoop CT (1969) Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J Fish Res Bd Can 26:2363–2394.

    Google Scholar 

  • Bruggeman WA (1982) Hydrophobic interactions in the aquatic environment. In: Hutzinger O (ed) The handbook of environmental chemistry, Vol. 2/Part 3. Springer-Verlag, Berlin, pp 83–102.

    Google Scholar 

  • Bruggeman WA (1983) Bioaccumulation of polychlorobiphenyls and related hydrophobic chemicals in fish. PhD Thesis, Univ of Amsterdam, RIZA, Lelystad, NL (114).

    Google Scholar 

  • Bruggeman WA, Martron LBJM, Kooiman D, Hutzinger O (1981) Accumulation and elimination kinetics of di-, tri-, and tetra-chlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10:811–832 (133).

    CAS  Google Scholar 

  • Bruggeman WA, Opperhuizen A, Wijbenga A, Hutzinger O (1984) Bioaccumulation of super-lipophilic chemicals in fish. Toxicol Environ Chem 7:173–189 (127).

    CAS  Google Scholar 

  • Buckler DR, Witt A, Mayer FL, Huckins JN (1981) Acute and chronic effects of kepone and mirex on the fathead minnow. Trans Am Fish Soc 110:270–280 (90).

    CAS  Google Scholar 

  • Burdick GE, Dean HJ, Harris EJ, Skea J, Frisa C, Sweeney C (1968) Methoxychlor as a blackfly larvicide, persistence of its residues in fish and its effect on stream arthropods. NY Fish Game J 15:121–142 (97).

    Google Scholar 

  • Burdick GE, Harris EJ, Dean HJ, Walker TM, Skea J, Colby D (1964) The accumulation of DDT in lake trout and the effect on reproduction. Trans Am Fish Soc 93:127–136.

    CAS  Google Scholar 

  • Calarmari D, Gaggino GF, Pacchetti G (1982) Toxicokinetics of low levels of Cd, Cr, Ni and their mixture in long-term treatment of Salmo gairdneri Rich. Chemosphere 11:59–70 (3).

    Google Scholar 

  • Call DJ, Brooke LT, Kent RI, Knuth ML, Anderson C, Moriarity C (1983) Toxicity, bioconcentration, and metabolism of the herbicide propanil (3’,4’ -dichloropropionanilide) in freshwater fish. Arch Environ Contam Toxicol 12:175–182(106).

    PubMed  CAS  Google Scholar 

  • Call DJ, Brooke LT, Kent RI, Poirer SH, Knuth ML, Shubat PJ, Slick EJ (1984) Toxicity, uptake, and elimination of the herbicides alachor and dinoseb in freshwater fish. J Environ Qual 13:493–498 (50).

    CAS  Google Scholar 

  • Call DJ, Brooke LT, Lu PA’ (1980) Uptake, elimination, and metabolism of three phenols by fathead minnows. Arch Environ Contam Toxicol 9:699–714 (118).

    PubMed  CAS  Google Scholar 

  • Carpenter LA, Eaton DL (1983) The disposition of 2,4-dichlorophenoxyacetic acid in rainbow trout. Arch Environ Contam Toxicol 12:169–173 (65).

    PubMed  CAS  Google Scholar 

  • Colwell AE, Schaefer CH (1980) Diets of Ictalurus nebulosus and Pomoxis nigroculatus altered by diflubenzuron. Can J Fish Aquat Sci 37:632–639 (77).

    CAS  Google Scholar 

  • Comar CL (1955) Radioisotopes in biology and agriculture. McGraw-Hill, New York, 481 pp.

    Google Scholar 

  • Cooper KR, Burton DT, Goodfellow WL, Rosenblatt DH (1984) Bioconcentration and metabolism of picric acid (2,4,6-trinitrophenol) and picramic acid (2-amino-4,6-dinitrophenol) in rainbow trout Salmo gairdneri. J Toxicol Environ Health 14:731–747 (176).

    PubMed  CAS  Google Scholar 

  • Corbet RL, Muir DCG, Webster GRB (1983) Fate of 1,3,6,8,-T4CDD in an outdoor aquatic system. Chemosphere 12:523–527 (147).

    CAS  Google Scholar 

  • Cravedi JP, Tulliez J (1982) Accumulation, distribution and depuration in trout of naphthenic and isoprenoid hydrocarbons (dodecyclohexane and pristane). Bull Environ Contam Toxicol 28:154–161 (166).

    PubMed  CAS  Google Scholar 

  • DeFoe DL, Veith GD, Carlson RW (1978) Effects of Aroclor 1248 and 1260 on the fathead minnow (Pimephales promelas). J Fish Res Bd Can 35:997–1002 (141).

    CAS  Google Scholar 

  • Ducat DA, Khan MAQ (1979) Absorption and elimination of 14C-cis-chlordane and 14Cphoto-cis-chlordane by goldfish Carassius auratus. Arch Environ Contam Toxicol 8:409–417 (61).

    CAS  Google Scholar 

  • Eberhardt LL (1975) Some methodology for appraising contaminants in aquatic ecosystems. J Fish Res Bd Can 32:1852–1859.

    CAS  Google Scholar 

  • Eberhardt LL, Nakatani RE (1968) A postulated effect of growth on retention time of metabolites. J Fish Res Bd Can 25:591–596 (37).

    Google Scholar 

  • Edgren M, Olsson M, Renberg L (1979) Preliminary results on uptake and elimination at different temperatures of p, pCR14 -DDT and two chlorobiphenyls in perch from brackish water. Ambio 8:270–272.

    CAS  Google Scholar 

  • Ellgehausen H, Guth JA, Esser HO (1980) Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains. Ecotox Environ Saf 4:134–157 (55).

    CAS  Google Scholar 

  • Fange R, Grove D (1979) Digestion. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, Vol. 8. Academic Press, New York, pp 161–260.

    Google Scholar 

  • Feroz M, Khan MAQ (1979a) Metabolism, tissue distribution, and elimination of cis- [14C] chlordane in the tropical freshwater fish Cichlasoma sp. J. Agric Food Chem 27:1190–1197 (84).

    CAS  Google Scholar 

  • Feroz M, Khan MAQ (1979b) Metabolism of 14C-heptachlor in goldfish (Carassius aura-tus). Arch Environ Contam Toxicol 8:519–531 (62).

    CAS  Google Scholar 

  • Fry FEJ (1971) The effect of environmental factors on the physiology of fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol. 6. Academic Press, New York, pp 1–98.

    Google Scholar 

  • Gakstatter JH, Weiss CM (1967) The elimination of DDT-C14, dieldrin-C14, and lindaneC14 from fish following a single sublethal exposure in aquaria. Trans Am Fish Soc 96:301–307 (67).

    CAS  Google Scholar 

  • Gallegos AF, Whicker FW (1973) Radiocesium retention by rainbow trout as affected by temperature and weight. In: Nelson DJ (ed) Radionuclides in ecosystems. CONF-710501-P1, US Nat Tech Infor Serv, pp 361–371 (43).

    Google Scholar 

  • Ganz CR, Schulze J, Stensby PS, Lyman FL, Macek K (1975) Accumulation and elimination studies of four detergent fluorescent whitening agents in bluegill sunfish (Lepomis macrochirus). Environ Sci Technol 9:738–744 (171).

    CAS  Google Scholar 

  • Geen GH, McKeown BA, Oloffs PC (1984) Acephate in rainbow trout (Salmo gairdneri): acute toxicity, uptake, elimination. J Environ Sci Health 19B:131–155 (49).

    Google Scholar 

  • Gerhart EH, Liukkonen RJ, Carlson RM, Stokes GN, Lukasewcyz M, Oyler AR (1981) Histological effects and bioaccumulation potential or coal particulate-bound phenanthrene in the fathead minnow Pimphales promelas. Environ Poll 25A:165–180 (163).

    Google Scholar 

  • Giblin FJ, Massaro EJ (1973) Pharmacodynamics of methyl mercury in the rainbow trout (Salmo gairdneri): tissue uptake, distribution and excretion. Toxicol Appl Pharmacol 24:81–91.

    PubMed  CAS  Google Scholar 

  • Gingerich WH (1986) Tissue distribution and elimination of rotenone in rainbow trout. Aquat Toxicol 8:27–40 (107).

    CAS  Google Scholar 

  • Gissel-Nielsen G, Gissel-Nielsen M (1973) Ecological effects of selenium application to field crops. Ambio 2:114–117 (33).

    CAS  Google Scholar 

  • Giessel-Nielsen M, Gissel-Nielsen G (1978) Sensitivity of trout to chronic and acute exposure to selenium. Agric Environ 4:85–91 (31).

    Google Scholar 

  • Glickman AH, Hamid AAR, Rickert DE, Lech JJ (1981) Elimination and metabolism of permethrin isomers in rainbow trout. Toxicol Appl Pharmacol 57:88–98 (104).

    PubMed  CAS  Google Scholar 

  • Glickman AH, Statham CN, Wu A, Lech JJ (1977) Studies on the uptake, metabolism, and disposition of pentachlorophenol and pentachloroanisole in rainbow trout. Toxicol Appl Pharmacol 41:649–658 (119).

    PubMed  CAS  Google Scholar 

  • Goebel H, Gorbach S, Knauf W, Rimpau RH, Huttenbach H (1982) Properties, effects, residues, and analytics of the insecticide endosulfan. Residue Reviews 83:1–165 (79).

    PubMed  CAS  Google Scholar 

  • Gray C, Knowles CO (1980) Uptake of propamocarb fungicide by bluegills and channel catfish. Chemosphere 9:329–333 (105).

    CAS  Google Scholar 

  • Gruger EH, Karrick NL, Davidson AI, Hurby T (1975) Accumulation of 3,4,3′,4′-tetrachlorobiphenyl and 2,4,5,2′,4′,5′- and 2,4,6,2′,4′,6′ -hexachlorobiphenyl in juvenile coho salmon. Environ Sci Technol 9:121–127.

    CAS  Google Scholar 

  • Guiney PD, Melancon MJ, Lech JJ, Peterson RE (1979) Effects of egg and sperm maturation and spawning on the distribution and elimination of a polychlorinated biphenyl in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol 47:261–272 (137).

    PubMed  CAS  Google Scholar 

  • Guiney PD, Peterson RE, Melancon MJ, Lech JJ (1977) The distribution and elimination of 2,5,2′,5′-[14C]tetrachlorobiphenyl in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol 39:329–338 (136).

    PubMed  CAS  Google Scholar 

  • Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New York.

    Google Scholar 

  • Hansen DJ, Parrish PR, Lowe JI, Wilson AJ, Wilson PD (1971) Chronic toxicity, uptake and retention of Aroclor 1254 in two estuarine fishes. Bull Environ Contam Toxicol 6:113–119 (143).

    PubMed  CAS  Google Scholar 

  • Hansen JG, Wiekhorst WB, Simon J (1976) Effects of dietary Aroclor 1242 on channel catfish (Ictalurus punctatus) and the selective accumulation of PCB components. J Fish Res Bd Can 33:1343–1352 (140).

    CAS  Google Scholar 

  • Hartman AM (1978) Mercury feeding schedules: effects on accumulation, retention, and behavior in trout. Trans Am Fish Soc 107:369–375 (25).

    CAS  Google Scholar 

  • Hasanen E, Kolehmainen S, Miettinen JK (1967) Biological half-time of 14CS in three species of fresh-water fish: perch, roach and rainbow trout. In: Aberg B, Hunga FP (eds) Radioecological concentration processes. Pergamon Press, Oxford, pp. 921–924 (42).

    Google Scholar 

  • Haux C, Larsson A (1984) Long-term sublethal physiological effects on rainbow trout, Salmo gairdneri, during exposure to cadmium and after subsequent recovery. Aquat Toxicol 5:129–142 (2).

    CAS  Google Scholar 

  • Hedgepeth MY, Doyle RT, Stehlik LL (1979) A laboratory analysis of kepone depuration by spot. Leiostomus xanthurus. SRAMSOE 229, Vir Inst Mar Sci, Gloucester Pt, VA. Cited in Stehlik and Merriner (1983) (94).

    Google Scholar 

  • Herman RL, Collis D, Bullock GL (1969) Oxytetracycline residues in different tissues of trout. US Fish Wildl Sen’ Tech Pap 37, pp 3–6 (175).

    Google Scholar 

  • Hesselberg RJ, Nicholson LW (1981) Influence of PCBs in water on uptake and elimination of DDT and DDE by lake trout. J Environ Qual 10:315–318 (71).

    CAS  Google Scholar 

  • Holmberg B, Jensen S, Larsson A, Lewander K, Olsson M (1972) Metabolic effects of technical pentachlorophenol (PCP) on the eel Anguilla anguilla L. Comp Biochem Physiol 43B:171–183 (123).

    Google Scholar 

  • Hoss DE (1967) Marking post-larval paralichthid flounders with radioactive elements. Trans Am Fish Soc 96:151–157 (11).

    Google Scholar 

  • Huckins JN, Petty JD (1983) Dynamics of isopropylphenyl diphenyl phosphate in fathead minnows. Chemosphere 12:799–807 (181).

    CAS  Google Scholar 

  • Huckins JN, Stalling DL, Petty JD, Buckler DR, Johnson BT (1982) Fate of kepone and mirex in the aquatic environment. J Agric Food Chem 30:1020–1027 (91).

    CAS  Google Scholar 

  • Ingebrigtsen K, Skaare JU (1983) Distribution and elimination of [14C]hexachlorobenzene after single oral exposure in the rainbow trout (Salmo gairdneri). J Toxicol Environ Health 12:309–316.

    PubMed  CAS  Google Scholar 

  • Ingebrigtsen K, Solbakken JE (1985) Distribution and elimination of [14C]-hexachlorobenzene after single oral dose exposure in cod (Gadus morhua) and flounder (Platichthys flesus). J Toxicol Environ Health 16:197–205 (131).

    PubMed  CAS  Google Scholar 

  • Ivie GW, Gibson JR, Bryant HE, Begin JJ, Barnett JR, Dorough HW (1974) Accumulation, distribution, and excretion of mirex-14C in animals exposed for long periods to the insecticide in the diet. J Agric Food Chem 22:646–653 (103).

    PubMed  CAS  Google Scholar 

  • Jackson GA (1976) Biologic half-life of endrin in channel catfish tissues. Bull Environ Contam Toxicol 16:505–507 (83).

    PubMed  CAS  Google Scholar 

  • Jarvenpaa T, Tillander M, Miettinen JK (1970) Methylmercury: half-life of elimination in flounder, pike and eel. Suomen Kemistilehti B43:439–442 (29).

    Google Scholar 

  • Johnson LG, Morris RL (1974) Chlorinated insecticide residues in the eggs of some freshwater fish. Bull Environ Contam Toxicol 11:503–510.

    PubMed  CAS  Google Scholar 

  • Karlsson-Norrgren L, Runn P (1985) Cadmium dynamics in fish: pulse studies with109Cd in female zebrafish, Brachydanio rerio. J Fish Biol 27:571–581 (6).

    CAS  Google Scholar 

  • Kelso JRM, Frank R (1974) Organochlorine residues, mercury, copper and cadmium in yellow perch, white bass and smallmouth bass, Long Point Bay, Lake Erie. Trans Am Fish Soc 103:577–581.

    CAS  Google Scholar 

  • Kenaga EE, Goring CIA (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. In: Eaton JG, Parrish PR, Hendricks AC (eds) Aquatic toxicology. ASTM STP 707, Philadelphia, PA, pp 78–115.

    Google Scholar 

  • Kennedy HD, Eller LL, Walsh DF (1970) Chronic effects of methoxychlor on bluegills and aquatic invertebrates. US Fish Wildl Sery Tech Pap 53, 18 pp (98).

    Google Scholar 

  • Kevern NR (1966) Feeding rate of carp estimated by a radioisotopic method. Trans Am Fish Soc 95:363–371 (44).

    Google Scholar 

  • Kikuchi M, Wakabayashi M, Kojima H, Yoshida T (1980) Bioaccumulation profiles of 35S-labelled sodium alkypoly(oxyethylene) sulfates in carp (Cyprinus carpio). Water Res 14:1541–1548 (186).

    CAS  Google Scholar 

  • Kimerle RA, Macek, KJ, Sleight BH, Burrows ME (1981) Bioconcentration of linear alkybenzene sulfonate (LAS) in bluegill (Lepomis macrochirus). Water Res 15:251–256 (185).

    CAS  Google Scholar 

  • Kimura K (1984) Accumulation and retention of cesium-137 by the common goby. Bull Jpn Soc Sci Fish 50:481–487 (45).

    CAS  Google Scholar 

  • Kimura K, Ichikawa R (1972) Accumulation and retention of injected cobalt-60 by the common goby. Bull Jpn Soc Sci Fish 38:1097–1103 (12).

    CAS  Google Scholar 

  • Kleeman JM, Olson JR, Chen SM, Peterson RE (1986) Metabolism and disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rainbow trout. Toxicol Appl Pharmacol 83:391–401 (149).

    PubMed  CAS  Google Scholar 

  • Kleeman JM, Olson JR, Chen SM, Peterson RE (1986) 2,3,7,8-Tetrachlorodibenzo-pdioxin metabolism and disposition in yellow perch. Toxicol Appl Pharmacol 83:402–411 (150).

    PubMed  CAS  Google Scholar 

  • Knowles CO, Benezet HJ, Mayer FL (1980) Thidiazuron uptake, distribution and metabolism in bluegills and channel catfish. J Environ Sci Health 15B:351–364 (110).

    Google Scholar 

  • Kobayashi K, Akitake H (1975) Studies on the metabolism of chlorophenols in fish—iI Turnover of absorbed PCP in goldfish. Bull Jpn Soc Sci Fish 41:93–99 (121).

    CAS  Google Scholar 

  • Konemann H, van Leeuwen K (1980) Toxikinetics in fish: accumulation and elimination of six chlorobenzenes by guppies. Chemosphere 9:3–19 (125).

    CAS  Google Scholar 

  • Korn S (1973) The uptake and persistence of carbaryl in channel catfish. Trans Am Fish Soc 102:137–139 (58).

    Google Scholar 

  • Korn S, Hirsch N, Struhsaker JW (1976) Uptake, distribution, and depuration of 14C-benzene in northern anchovy, Engraulis mordax,and striped bass, Morone saxatilis. Fish Bull 74:545–551 (167).

    Google Scholar 

  • Korn S, Rice S (1981) Sensitivity to, and accumulation and depuration of aromatic petroleum components by early life stages of coho salmon (Oncorhynchus kisutch). Rapp P-V Reun Cons Int Explor Mer 178:87–92 (159).

    CAS  Google Scholar 

  • Kumada H, Kimura S, Yokote M (1980) Accumulation and biological effects of cadmium in rainbow trout. Bull Jpn Soc Sci Fish 46:97–103 (4).

    CAS  Google Scholar 

  • Kumada H, Kimura S, Yokote M, Matida Y (1973) Acute and chronic toxicity, uptake and retention of cadmium in freshwater organisms. Bull Freshw Fish Res Lab 22:157–165 (5).

    Google Scholar 

  • Ladd S (1978) Kinetics of 14C–carbofuran in a model ecosystem. Bionomics Inc Report BW–78–3–091, submitted to FMC Corp, Middleport, NY. Cited in NRCC (1979) (59).

    Google Scholar 

  • Lamb DW, Roney DJ (1976) Accumulation and persistence of residue in channel catfish exposed to matacil-14C. Mobay Chem Corp Report 49309. Cited in NRCC (1982) (54).

    Google Scholar 

  • Layiwola PJ, Linnecar DFC, Knights B (1983) The biotransformation of three 14C-labelled phenolic compounds in twelve species of freshwater fish. Xenobiotica 13:107–113 (117).

    PubMed  CAS  Google Scholar 

  • Leeuwangh P, Bult H, Schneiders L (1975) Toxicity of hexachlorobutadiene in aquatic organisms. In: Koeman JH, Strik JJTWA (eds) Sublethal effects of toxic chemicals on aquatic animals. Elsevier, Amsterdam, pp 167–176 (173).

    Google Scholar 

  • Leeuwangh P, Nijman W, Visser H, Kolar Z, de Goey JJM (1976) Toxicity of triphenyltin fungicides in the aquatic environment. Meded Fac Landbouwwet Rijksuniv Gent 41:1483–1490. Cited in NRCC (1985) (35).

    CAS  Google Scholar 

  • Levy G, Gibaldi M (1975) Pharmacokinetics. In: Gillette JR, Mitchell JR (eds) Handbook of experimental pharmacology. Springer-Verlag, Berlin, pp 1–34.

    Google Scholar 

  • Lieb AJ, Bills DD, Sinnhuber RO (1974) Accumulation of dietary polychlorinated biphenyls (Aroclor 1254) by rainbow trout (Salmo gairdneri). J Agric Food Chem 22:638–642 (142).

    PubMed  CAS  Google Scholar 

  • Linder G, Bergman HL, Meyer JS (1985) Anthracene bioconcentration in rainbow trout during single-compound and complex-mixture exposures. Environ Toxicol Chem 4:549–558 (152).

    CAS  Google Scholar 

  • Lockhart WL, Menter DA, Billeck BN, Rawn GP, Muir DCG (1984) Bioaccumulation of some forestry pesticides in fish and aquatic plants. In: Garner WY, Harvey J (eds) Chemical and biological controls in forestry. Am Chem Soc Symp Ser 238, pp 298–315 (52).

    Google Scholar 

  • Lockhart WL, Uthe JF, Kenney AR, Mehrle PM (1972) Methylmercury in northern pike (Esox lucius): distribution, elimination and some biochemical characteristics of contaminated fish. J Fish Res Bd Can 29:1519–1523 (28).

    CAS  Google Scholar 

  • Macek KJ (1970) Biological magnification of pesticide residues in food chains. In: Gillett JW (ed) The biological impact of pesticides in the environment. Oregon St Univ Press, Corvallis, OR, pp 17–21.

    Google Scholar 

  • Macek KJ, Petrocelli SR, Sleight BH (1979) Considerations in assessing the potential for, and significance of biomagnification of chemical residues in aquatic food chains. In: Marking LL, Kimerle RA (eds) Aquatic toxicology. ASTM STP 667, Philadelphia, PA, pp 251–268.

    Google Scholar 

  • Macek KJ, Rodgers CR, Stalling DL, Korn S (1970) The uptake, distribution and elimination of dietary 14C-DDT and 14C-dieldrin in rainbow trout. Trans Am Fish Soc 99:689–695 (66).

    CAS  Google Scholar 

  • Madeley JR, Birtley RDN (1980) Chlorinated paraffins and the environment. 2. Aquatic and avian toxicology. Environ Sci Technol 14:1215–1221 (165).

    CAS  Google Scholar 

  • Mayer FL (1976) Residue dynamics of di-(2-ethylhexyl)phthalate in fathead minnow (Pimephales promelas). J Fish Res Bd Can 33:2610–2613 (183).

    CAS  Google Scholar 

  • Mayer FL, Adams WJ, Finley MT, Michael PR, Mehrle PM, Saeger VW (1981) Phosphate ester hydraulic fluids: an aquatic environmental assessment of Pydrauls 50E and 115E. In: Branson DR, Dickson KL (eds) Aquatic toxicology and hazard assessment; fourth conference. ASTM STP 737, Philadelphia, PA, pp 103–123.

    Google Scholar 

  • Mayer FL, Mehrle PM (1977) Toxicological aspects of toxaphene in fish: a summary. Trans 42nd North Am Wildl Nat Res Conf, Wildl Manage Inst, p 365 (111).

    Google Scholar 

  • Mayer KS, Mayer FL, Witt A (1985) Waste transformer oil and PCB toxicity to rainbow trout. Trans Am Fish Soc 114:869–886 (144).

    CAS  Google Scholar 

  • McCarthy JF, Jimenez BD (1985) Reduction in bioavailability to bluegills of polychlorinated aromatic hydrocarbons bound to dissolved humic acid. Environ Toxicol Chem 4:511–521 (157).

    CAS  Google Scholar 

  • McLeese DW, Zitko V, Sergeant DB, Burridge L, Metcalfe CD (1981) Lethality and accumulation of alkylphenols in aquatic fauna. Chemosphere 10:723–730 (177).

    CAS  Google Scholar 

  • Melancon MJ, Lech JJ (1978) Distribution and elimination of naphthalene and 2-methylnaphthalene in rainbow trout during short-and long-term exposures. Arch Environ Contam Toxicol 7:207–220 (158).

    PubMed  CAS  Google Scholar 

  • Melancon MJ, Lech JJ (1979) Uptake, biotransformation, disposition, and elimination of 2-methylnaphthalene in several fish species. In: Marking LL, Kimerle RA (eds) Aquatic toxicology. ASTM STP 667, Philadelphia, PA, pp 5–22 (161).

    Google Scholar 

  • Melancon MJ, Lech JJ (1980) Uptake, metabolism, and elimination of 14C-labelled 1,2,4-trichlorobenzene in rainbow trout and carp. J Toxicol Environ Health 6:645–658 (126).

    PubMed  CAS  Google Scholar 

  • Merlini MF, Berg AA, Brazzelli A, Oregioni B, Pozzi G (1973) The biological pathway of zinc (65Zn) in freshwater fish and its alteration by heavy metals. In: Nelson DJ (ed) Radionuclides in ecosystems. CONF-710501-P1, US Nat Tech Infor Serv, pp 285–306 (38).

    Google Scholar 

  • Merlini M, Pozzi G (1977) Lead and freshwater fishes: part 2- ionic lead accumulation. Environ Poll 13:119–126 (17).

    Google Scholar 

  • Miller DW, Vetter RJ, Atchison GJ (1980) Effect of temperature and dissolved oxygen on uptake and retention of 54Mn in fish. Health Phys 33:221–225 (18).

    Google Scholar 

  • Mitchell AI, Plank PA, Thomson IM (1977) Relative contributions of 14C-DDT and of two polychlorinated biphenyls in the lipids of cod tissues after a single oral dose. Arch Environ Contam Toxicol 6:525–532.

    PubMed  CAS  Google Scholar 

  • Miyauchi M, Kondo M, Takagi M, Uematsu T (1981) Behavior of 2,4-dichloro pnitrobiphenyl ether and 2,4,6-trichloro p-nitrobiphenyl ether in fish. Bull Jpn Soc Sci Fish 47:871–879 (174).

    CAS  Google Scholar 

  • Muir DCG, Grift NP (1981) Environmental dynamics of phosphate esters. II. Uptake and bioaccumulation of 2-ethylhexyl diphenyl phosphate and diphenyl phosphate by fish. Chemosphere 10:847–855 (178).

    CAS  Google Scholar 

  • Muir DCG, Grift NP, Townsend BE, Metner DA, Lockhart WL (1982) Comparison of the uptake and bioconcentration of fluridone and terbutryn by rainbow trout and Chironomus tentans in sediment and water systems. Arch Environ Contam Toxicol 11:595–602 (109).

    CAS  Google Scholar 

  • Muir DCG, Marshall WK, Webster GRB (1985) Bioconcentration of PCDDs by fish: effects of molecular structure and water chemistry. Chemosphere 14:829–833 (70).

    CAS  Google Scholar 

  • Muir DCG, Yarechewski AL, Grift NP (1983) Environmental dynamics of phosphate esters. III. Comparison of the bioconcentration of four triaryl phosphates by fish. Chemosphere 12:155–166 (179).

    CAS  Google Scholar 

  • Nagashima Y, Kikuchi T, Chiba M (1984) Toxicity and accumulation of mercury in fish, the himedaka Oryzias latipes. Bull Jpn Soc Sci Fish 50:95–99 (24).

    CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE (1974) Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ Sci Technol 8:1113–1115 (124).

    CAS  Google Scholar 

  • Niimi AJ (1979) Quantitative analysis of carbon-14 labelled polychlorinated biphenyls and hexachlorobenzene in biological samples using an oxidative combustion method. Int J Environ Anal Chem 6:267–271.

    CAS  Google Scholar 

  • Niimi AJ (1983a) Physiological effects of contaminant dynamics on fish. In: Nriagu JO (ed) Aquatic toxicology. Wiley, New York, pp 206–246.

    Google Scholar 

  • Niimi AJ (1983b) Biological and toxicological effects of environmental contaminants in fish and their eggs. Can J Fish Aquat Sci 40:306–312.

    CAS  Google Scholar 

  • Niimi AJ (1985) Use of laboratory studies in assessing the behavior of contaminants in fish inhabiting natural ecosystems. Wat Poll Res J Can 20:79–88.

    Google Scholar 

  • Niimi AJ (1986) Biological half-lives of chlorinated diphenyl ethers in rainbow trout (Salmo gairdneri). Aquat Toxicol 9:105–116. (151).

    CAS  Google Scholar 

  • Niimi AJ, Cho CY (1981) Elimination of hexachlorobenzene (HCB) by rainbow trout (Salmo gairdneri), and an examination of its kinetics in Lake Ontario salmonids. Can J Fish Aquat Sci 38:1350–1356 (128).

    CAS  Google Scholar 

  • Niimi AJ, Cho CY (1983) Laboratory and field analysis of pentachlorophenol (PCP) accumulation by salmonids. Water Res 17:1791–1795 (120).

    CAS  Google Scholar 

  • Niimi Ai, Oliver BG (1983) Biological half-lives of polychlorinated biphenyl (PCB) congeners in whole fish and muscle of rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 40:1388–1394 (132).

    CAS  Google Scholar 

  • Niimi AJ, Oliver BG (1986) Biological half-lives of chlorinated dibenzo-p-dioxins and dibenzofurans in rainbow trout (Salmo gairdneri). Environ Toxicol Chem 5:49–53 (146).

    CAS  Google Scholar 

  • Niimi AJ, Palazzo V (1985) Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow trout (Salmo gairdneri). Water Res 19:205–207 (101).

    CAS  Google Scholar 

  • Niimi AJ, Palazzo V (1986) Biological half-lives of eight polycyclic aromatic hydrocar- bons (PAHs) in rainbow trout (Salmo gairdneri). Water Res 20:503–507 (153).

    CAS  Google Scholar 

  • Norheim G, Roald SO (1985) Distribution and elimination of hexachlorobenzene, octachlorostyrene and decachlorobiphenyl in rainbow trout, Salmo gairdneri. Aquat Toxicol 6:13–24 (129).

    CAS  Google Scholar 

  • Norstrom RJ, McKinnon AE, de Freitas ASW (1976) A bioenergetics-based model for pollutant accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa River yellow perch (Perca flavescens). J Fish Res Bd Can 16:248–267.

    Google Scholar 

  • NRCC (1975a) Endosulfan: its effects on environmental quality. Nat Res Coun Can No 14098, Ottawa, Ont, 100 pp.

    Google Scholar 

  • NRCC (1975b) Methoxychlor: its effect on environmental quality. Nat Res Coun Can No 14102, Ottawa, Ont, 164 pp.

    Google Scholar 

  • NRCC (1978) Ecotoxicology of chlorpyrifos. Nat Res Coun Can No 16079, Ottawa, Ont, 314 pp.

    Google Scholar 

  • NRCC (1979) Carbofuran: criteria for interpreting the effects of its use on environmental quality. Natl Res Coun Can No 16740, Ottawa, Ont, 191 pp.

    Google Scholar 

  • NRCC (1982) Aminocarb: the effects of its use on the forest and the human environment. Natl Res Coun Can No 18979, Ottawa, Ont, 253 pp.

    Google Scholar 

  • NRCC (1985) Organotin compounds in the aquatic environment: scientific criteria for assessing their effects on environmental quality. Natl Res Coun Can No 22494, Ottawa, Ont, 284 pp.

    Google Scholar 

  • Oliver BG, Niimi Ai (1983) Bioconcentration of chlorobenzenes from water by rainbow trout: correlations with partition coefficients and environmental residues. Environ Sci Technol 17:287–291.

    CAS  Google Scholar 

  • Oliver BG, Niimi AJ (1984) Rainbow trout bioconcentration of some halogenated aromatics from water at environmental concentrations. Environ Toxicol Chem 3:271–277.

    CAS  Google Scholar 

  • Oliver BG, Niimi AJ (1985) Bioconcentration factors of some halogenated organics for rainbow trout: limitations in their use for prediction of environmental residues. Environ Sci Technol 19:842–849.

    CAS  Google Scholar 

  • Olsson M, Jensen S, Reutergard L (1978) Seasonal variation of PCB levels in fish—an important factor in planning aquatic monitoring programs. Ambio 7:66–69.

    CAS  Google Scholar 

  • Olsson M, Reutergard L (1986) DDT and PCB pollution trends in the Swedish aquatic environment. Ambio 15:103–109.

    CAS  Google Scholar 

  • Parrish PR, Cook GH, Patrick JM (1974) Hexachlorobenzene: effects on several estuarine animals. Proc 28th Ann Conf SE Assoc Game Fish Comm, pp 179–187 (130).

    Google Scholar 

  • Pentreath RJ (1973) The accumulation and retention of 65Zn and 54Mn by the plaice, Pleuronectes platessa L. J Exp Mar Biol Ecol 12:1–18 (19).

    CAS  Google Scholar 

  • Pentreath RJ (1976a) The accumulation of inorganic mercury from seawater by the plaice, Pleuronectes platessa L. J Exp Mar Biol Ecol 24:103–119 (21).

    CAS  Google Scholar 

  • Pentreath RJ (1976b) Some further studies of the accumulation and retention of 65Zn and 54Mn by the plaice, Pleuronectes platessa L. J Exp Mar Biol Ecol 21:179–189 (20).

    CAS  Google Scholar 

  • Pentreath RJ (1976c) The accumulation of organic mercury from seawater by the plaice, Pleuronectes platessa L. J Exp Mar Biol Ecol 24:121–132 (30).

    CAS  Google Scholar 

  • Pentreath RJ (1976d) The accumulation of mercury from food by the plaice, Pleuronectes platessa L. J Exp Mar Biol Ecol 25:51–65 (22).

    CAS  Google Scholar 

  • Pentreath RJ (1976e) The accumulation of mercury by the thornback ray, Raja clavata L. J Exp Mar Biol Ecol 25:131–140 (23).

    CAS  Google Scholar 

  • Pentreath RJ (1977a) The accumulation of 10mAg by the plaice, Pleuronectes platessa L. and the thornback ray, Raja clavata L. J Exp Mar Biol Ecol 29:315–325 (34).

    CAS  Google Scholar 

  • Pentreath RI (1977b) The accumulation of cadmium by the plaice, Pleuronectes platessa L. and the thornback ray, Raja clavata L. J Exp Mar Biol Ecol 30:223–232 (7).

    CAS  Google Scholar 

  • Podowski AA, Khan MAQ (1984) Fate of hexachlorocyclopentadiene in water and goldfish. Arch Environ Contam Toxicol 13:471–481 (88).

    PubMed  CAS  Google Scholar 

  • Pruitt GW, Grantham BJ, Pierce RC (1977) Accumulation and elimination of pentachlorophenol by the bluegill, Lepomis macrochirus. Trans Am Fish Soc 106:462–465 (122).

    CAS  Google Scholar 

  • Reinbold KA, Kapoor IP, Childers WF, Bruce WN, Metcalf RL (1971) Comparative uptake and biodegradability of DDT and methoxychlor by aquatic organisms. Ill Natur Hist Sury Bull 30:405–417. Cited in NRCC (1975b) (99).

    Google Scholar 

  • Reinert RE, Bergman H (1974) Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes. J Fish Res Bd Can 31:191–199.

    CAS  Google Scholar 

  • Reinert RE, Stone LJ, Willford WA (1974) Effect of temperature on accumulation of methylmercuric chloride and p,p’ DDT by rainbow trout (Salmo gairdneri). J Fish Res Bd Can 31:1649–1652.

    CAS  Google Scholar 

  • Renfro WC, Osterberg C (1969) Radiozinc decline in starry flounders after temporary shutdown of Hanford reactors. In: Nelson DJ, Evans FC (eds) Symposium on Radio-ecology. CONF-670503, Atomic Energy Comm, pp 372–379 (39).

    Google Scholar 

  • Richardson GM, Qadri SU (1982) Acute toxicity, kinetics and metabolism of aminocarb in the brown bullhead (Ictalurus nebulosus). Wat Poll Res J Can 17:153–158 (53).

    Google Scholar 

  • Roberts Jr, de Freitas ASW, Gidney MAJ (1977) Influence of lipid pool size on bioaccumulation of the insecticide chlordane by northern redhorse suckers (Moxostoma macrolepidotum). J Fish Res Bd Can 34:89–97 (63).

    Google Scholar 

  • Roberts MH, Fisher DJ (1985) Uptake and clearance rates of kepone in two marine fish species. Arch Environ Contam Toxicol 14:1–6 (95).

    PubMed  Google Scholar 

  • Rodgers CA (1970) Uptake and elimination of simazine by green sunfish (Lepomis cyanellus Raf.). Weed Sci 18:134–136 (108).

    CAS  Google Scholar 

  • Rodgers DW (1986) Tritium dynamics in juvenile rainbow trout, Salmo gairdneri. Health Phys 50:89–98 (48).

    PubMed  CAS  Google Scholar 

  • Rodgers DW, Qadri SU (1982) Growth and mercury accumulation in yearling yellow perch, Percaflavescens, in the Ottawa River, Ontario. Environ Biol Fish 7:377–383.

    CAS  Google Scholar 

  • Rosenthal HL (1957) The metabolism of strontium-90 and calcium-45 by lesbistes. Biol Bull 113:442–450 (47).

    CAS  Google Scholar 

  • Ruohtula M, Miettinen JK (1975) Retention and elimination of 203Hg-labelled methyl-mercury in rainbow trout. Oikos 26:385–390 (26).

    CAS  Google Scholar 

  • Sasaki K, Takeda T, Uchiyama M (1982) Bioconcentration and excretion of phosphoric acid triesters by killifish (Oryzeas latipes). Bull Environ Contam Toxicol 28:752–759 (182).

    PubMed  CAS  Google Scholar 

  • Sato T, Ose Y, Sakai T (1980) Toxicological effect of selenium on fish. Environ Poll 21A:217–224 (32).

    Google Scholar 

  • Saunders HO, Hunn JB (1982) Toxicity, bioconcentration, and depuration of the herbicide Bolero 8EC in freshwater invertebrates and fish. Bull Jpn Soc Sci Fish 48:1139–1143 (57).

    Google Scholar 

  • Schaefer CH, Dupras EF, Stewart RJ, Davidson LW, Colwell AE (1979) The accumulation and elimination of diflubenzuron by fish. Bull Environ Contam Toxicol 21:249–254 (78).

    PubMed  CAS  Google Scholar 

  • Schimmel SC, Patrick JM, Forester J (1976) Heptachlor: uptake, depuration, retention, and metabolism by spot, Leiostomus xanthurus. J Toxicol Environ Health 2:169–178 (85).

    PubMed  CAS  Google Scholar 

  • Schimmel SC, Patrick JM, Wilson AJ (1977) Acute toxicity to and bioconcentration of endosulfan by estuarine animals. In: Mayer FL, Hamelink JL (eds) Aquatic toxicology and hazard evaluation. ASTM STP 634, Philadelphia, PA, pp 241–252 (80).

    Google Scholar 

  • Schoettger RA, Walker CR, Marking LL, Julin AM (1967) MS-222 as an anesthetic for channel catfish: its toxicity, efficacy, and muscle residues. US Fish Wildl Sery Res Pub133. 14 pp (187).

    Google Scholar 

  • Schultz DP, Harman PD, Luhning CW (1979) Uptake, metabolism, and elimination of the lampricide 3-trifluoromethyl-4-nitrophenol by largemouth bass (Micropterus salmoides). J Agric Food Chem 27:328–331 (112).

    PubMed  CAS  Google Scholar 

  • Scott DP (1961) Radioactive iron as a fish mark. J Fish Res Bd Can 18:383–391 (13).

    Google Scholar 

  • Seguchi K, Akasa S (1981) Intake and excretion of diazinon in freshwater fishes. Bull Environ Contam Toxicol 27:244–249 (73).

    PubMed  CAS  Google Scholar 

  • Shannon LR (1977) Accumulation and elimination of dieldrin in muscle tissue of channel catfish. Bull Environ Contam Toxicol 17:637–644 (76).

    PubMed  CAS  Google Scholar 

  • Sharpe MA, de Freitas ASW, McKinnon AE (1977) The effect of body size on methyl-mercury clearance by goldfish (Carassius auratus). Environ Biol Fish 2:177–183 (27).

    CAS  Google Scholar 

  • Shealy MH, Carlson CA (1973) Accumulation and retention of strontium-85 marks by young largemouth bass. In: Nelson DJ (ed) Radionuclides in ecosystems. CONF710501–P1, US Natl Tech Infor Serv, pp 307–317 (46).

    Google Scholar 

  • Shulman J, Brisbin IL, Knox W (1961) Effect of temperature, salinity, and food intake on the excretion of Zn65 in small marine fish. Biol Bull 121:378 (41).

    Google Scholar 

  • Sitthichaikasem S (1978) Some toxicological effects of phosphate esters on rainbow trout and bluegill. PhD Thesis, Iowa St Univ, Ames, IO. Cited in Mayer et al. (1981) (180).

    Google Scholar 

  • Skea JC, Simmonin HJ, Jackling S, Symula J (1981). Accumulation and retention of mirex by brook trout fed a contaminated diet. Bull Environ Contam Toxicol 27:79–83 (100).

    PubMed  CAS  Google Scholar 

  • Smith GN, Watson BS, Fischer FS (1966) The metabolism of [14C] 0,0-diethyl 0–3,5,6-trichloro-2-pyridyl phosphorothioate (Dursban) in fish. J Econ Entomol 59:1464–1475. Cited in NRCC (1978) (64).

    PubMed  CAS  Google Scholar 

  • Solbakken JE, Ingebrigtsen K, Palmork KH (1984) Comparative study on the fate of the polychlorinated biphenyl, 2,4,5,2’,4’,5 ’ -hexachlorobiphenyl and polycyclic aromatic hydrocarbon phenanthrene in flounder (Platichthys flesus),determined by liquid scintillation counting and autoradiography. Mar Biol 83:239–246 (164).

    Google Scholar 

  • Solbakken JE, Palmork KH (1980) Distribution of radioactivity in the chondrichthyes Squalus acanthias and the osteichthyes Salmo gairdneri following intragastric administration of (9-14C) phenanthrene. Bull Environ Contam Toxicol 25:902–908 (162).

    PubMed  CAS  Google Scholar 

  • Southworth GR (1979) Transport and transformation of anthracene in natural waters. In: Marking LL, Kimerle RA (eds) Aquatic toxicology. ASTM STP 667, Philadelphia, PA, pp 359–380 (155).

    Google Scholar 

  • Southworth GR, Keffer CC, Beauchamp JJ (1981) The accumulation and disposition of benz(a)acridine in fathead minnow, Pimephales promelas. Arch Environ Contam Toxicol 10:561–569 (156).

    PubMed  CAS  Google Scholar 

  • Spacie A, Hamelink JL (1979) Dynamics of trifluralin in river fishes. Environ Sci Technol 13:817–822 (113).

    CAS  Google Scholar 

  • Spacie A, Hamelink JL (1982) Alternative models for describing the bioconcentration of organics in fish. Environ Toxicol Chem 1:309–320.

    CAS  Google Scholar 

  • Spacie A, Landrum PF, Leversee GJ (1983) Uptake, depuration, and biotransformation of anthracene and benzo[a]pyrene in bluegill sunfish. Ecotox Environ Saf 7:330–341 (154).

    CAS  Google Scholar 

  • Statham CN, Croft WA, Lech JJ (1978) Uptake, distribution, and effects of carbon tetrachloride in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol 45:131–140 (168).

    PubMed  CAS  Google Scholar 

  • Statham CN, Lech JJ (1975) Metabolism of 2′,5-dichloro-4′ -nitrosalicylanilide (Bayer 73) in rainbow trout (Salmo gairdneri). J Fish Res Bd Can 32:515–522 (56).

    CAS  Google Scholar 

  • Stehlik LL, Merriner JV (1983) Effects of accumulated dietary kepone on spot (Leiostomus xanthurus). Aquat Toxicol 3:345–358 (93).

    CAS  Google Scholar 

  • Sudersham P, Khan MAQ (1979) Metabolic and elimination products of [14C]photodieldrin from bluegill fish. Pest Biochem Physiol 12: 216–223 (74).

    Google Scholar 

  • Sudersham P, Khan MAQ (1980) Metabolic fate of [14C]endrin in bluegill fish. Pest Biochem Physiol 14: 5–12 (81).

    Google Scholar 

  • Sudersham P, Khan MAQ (1981) Metabolism of [14C] dieldrin in bluegill sunfish. Pest Biochem Physiol 15: 192–199 (75).

    Google Scholar 

  • Tanabe S, Maruyama K, Tatsukawa R (1982) Absorption efficiency and biological half-life of individual chlorobiphenyls in carp (Cyprinus carpio) orally exposed to Kanechlor products. Agric Biol Chem 46: 891–898 (134).

    CAS  Google Scholar 

  • Tateda Y, Hirano S, Koyanagi T (1985) Accumulation of iron-59 by black-fish Girella punctata from food organisms. Bull Jpn Soc Sci Fish 51: 2067–2072 (15).

    CAS  Google Scholar 

  • Tateda Y, Nakahara M, Koyanagi T (1984) Accumulation of iron-59 in marine animals from different uptake route. Bull Jpn Soc Sci Fish 501: 89–93 (14).

    Google Scholar 

  • ten Holder VJHM, Hogendoorn-Roozemond AS, Kolari Z, Strik JJTWA, Koeman JH (1977) The uptake, tissue distribution and retention of hexavalent chromium by young rainbow trout (Salmo gairdneri). In: Hutzinger O, van Lelyveld IH, Zoeteman BCJ (eds) Aquatic pollutants: transformation and biological effects. Pergamon Press, Oxford, pp 475–476 (8).

    Google Scholar 

  • Thomann RV (1981) Equilibrium model of fate of microcontaminants in diverse aquatic food chains. Can J Fish Aquat Sci 38: 280–296.

    CAS  Google Scholar 

  • Thomas RE, Rice SD (1986) The effects of salinity on uptake and metabolism of toluene and naphthalene by dolly varden, Salvelinus malma. Mar Environ Res 18: 203–214.

    CAS  Google Scholar 

  • Tooby TE, Durbin FJ (1975) Lindane residue accumulation and elimination in rainbow trout (Salmo gairdnerii Richardson) and roach (Rutilus rutilus Linnaeus). Environ Poll 8: 79–89 (86).

    Google Scholar 

  • Tovell PWA, Howes D, Newsome CS (1975) Absorption, metabolism and excretion by goldfish of the anionic detergent sodium lauryl sulphate. Toxicology 4: 17–29 (184).

    Google Scholar 

  • van der Putte I, Lubbers J, Kolari Z (1981) Effect of pH on uptake, tissue distribution and retention of hexavalent chromium in rainbow trout (Salmo gairdneri). Aquat Toxicol 2: 3–18 (9).

    Google Scholar 

  • van Veld PA, Bender ME, Roberts MH (1984) Uptake, distribution, metabolism and clearance of chlordecone by channel catfish (Ictalurus punctatus). Aquat Toxicol 5: 33–49 (89).

    Google Scholar 

  • Veith GD, DeFoe DL, Bergstedt BV (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Bd Can 36: 1040–1048.

    CAS  Google Scholar 

  • Ward GS, Cramm GC, Parrish PR, Trachman H, Slesinger A (1981) Bioaccumulation and chronic toxicity of bis(tributyltin) oxide (TBTO): tests with a saltwater fish. In: Branson DR, Dickson KL (eds) Aquatic toxicology and hazard assessment: fourth conference. ASTM STP 737, Philadelphia, PA, pp 183–200 (36).

    Google Scholar 

  • Warlen SM, Wolfe DA, Lewis CW, Colby DR (1977) Accumulation and retention of dietary 14C-DDT by Atlantic menhaden. Trans Am Fish Soc 106: 95–104 (69).

    Google Scholar 

  • Wong K, Addison RF, Law FPC (1981) Uptake, metabolism, and elimination of diphenyl ether by trout and stickleback. Bull Environ Contam Toxicol 26: 243–247 (170).

    Google Scholar 

  • Wong PTS, Chau YK, Kramar O, Bengert GA (1981) Accumulation and depuration of tetramethyllead by rainbow trout. Water Res 15: 621–625 (16).

    Google Scholar 

  • Yamato Y, Kiyonaga M, Watanabe T (1983) Comparative bioaccumulation and elimination of HCH isomers in short-necked clam (Venerupis japonica) and guppy (Poecilia reticulata). Bull Environ Contam Toxicol 31: 352–359 (87).

    Google Scholar 

  • Zinck ME, Addison RF (1975) The effect of temperature on the rate of conversion of p, p′ -DDT to p, p′ -DDE in brook trout. Can J Biochem 53: 636–639 (72).

    Google Scholar 

  • Zitko V (1977a) Uptake and excretion of chlorinated and brominated hydrocarbons by fish. Can Dept Fish Mar Sery Tech Rep 737, 14 pp (138).

    Google Scholar 

  • Zitko V (1977b) The accumulation of polybrominated biphenyls by fish. Bull Environ Contam Toxicol 17: 285–292 (116).

    Google Scholar 

  • Zitko V (1980) The uptake and excretion of mirex and dechloranes by juvenile Atlantic salmon. Chemosphere 9:73–78 (102).

    Google Scholar 

  • Zitko V, Carson WG (1977a) A comparison of the uptake of PCB’s and isopropyl-PCB’s (Chloralkylene 12) by fish. Chemosphere 6: 133–140 (139).

    Google Scholar 

  • Zitko V, Carson WG (1977b) Uptake and excretion of chlorinated diphenyl ethers and brominated toluenes by fish. Chemosphere 6: 293–301 (115).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Niimi, A.J. (1987). Biological half-lives of chemicals in fishes. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 99. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8719-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8719-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8721-3

  • Online ISBN: 978-1-4613-8719-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics