Skip to main content

Hyperbolic Aspects in the Theory of the Porous Medium Equation

  • Chapter
Metastability and Incompletely Posed Problems

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 3))

Abstract

The porous medium equation (PME)

$$ {{\text{u}}_{\text{t}}} = \Delta ({{\text{u}}^{\text{m}}}),\,{\text{m>1}} $$

is one of the simplest models of nonlinear diffusion equations. It arises naturally in the study of a number of problems describing the evolution of a continuous quantity subject to a nonlinear diffusion mechanism, which we can instance explain as caused by a diffusion coefficient of the form

$$ {\text{c(u) = m}}{{\text{u}}^{{{\text{m - 1}}}}} $$
((1.1))

if we write the PME as ut = div(c(u) ∇u). Among the applications of the PME have

  1. (i)

    Percolation of gas through porous media, where m ≥ 2 [M],

  2. (ii)

    Radiative heat transfer in ionized plasmas, where m ≃ 6 [ZR],

  3. (iii)

    Thin liquid films spreading under gravity, where m = 4 [Bu],

  4. (iv)

    Crowd-avoiding population spreading, where m>1 [GM].

Partly supported by USA-Spain Cooperation Agreement under Joint Research Grant CCB-8402023. The paper was written while the author was a member of the Institute for Mathematics and its Applications, University of Minnesota, 1985.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Aronson, Regularity properties of flows through porous media: the interface, Arch. Rational Mech. Anal. 37 (1970), 1–10.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D.G. Aronson, Regularity properties of flows through porous media: a counterexample, SIAM J. Appl. Math. 19 (1970), 299–307.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.G. Aronson-Ph. Bénilan, Régularité des solutions de l’équation des milieux poreux dans IR, C. Rendus Acad. Sci. Paris Sér. A-B 288 (1979), 103–105.

    MATH  Google Scholar 

  4. D.G. Aronson, L.A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1963), 351–366.

    MathSciNet  Google Scholar 

  5. D.G. Aronson-L.A. Caffarelli,-S. Kamin, How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Anal. 14 (1983), 639–658.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.G. Aronson-L.A. Caffarelli-J.L. Vazquez, Interfaces with a corner-point in one-dimensional porous medium flow, Comm. Pure Applied Math. 38 (1985), 375–404.

    Article  MathSciNet  MATH  Google Scholar 

  7. D.G. Aronson-J.L. Vazquez, The porous medium equation as finite-speed approximation to a Hamilton-Jacobi equation, J. d’Analyse Nonlinéaire, to appear.

    Google Scholar 

  8. G.I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh. 16 (1952), 67–78 (in Russian).

    MathSciNet  MATH  Google Scholar 

  9. Ph. Benilan-M.G. Crandall, The continuous dependence on ϕ of the solutions of ut - Δϕ(u) = 0, Indiana Univ. Math. J. 30 (1971), 161–177.

    MathSciNet  Google Scholar 

  10. Ph. Bénilan — M.G. Crandall — M. Pierre, Solutions of the porous medium equation in IRn under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), 51–87.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ph. Bénilan, — J.L. Vazquez, Concavity of solutions of the porous medium equation, MRC TS Report #2851, to appear in Trans. Amer. Math. Soc.

    Google Scholar 

  12. J. Buckmaster, Viscous sheets advancing over dry beds, J. Fluid Mech. 81 (1977), 735–756.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. L.A. Caffarelli, — A. Friedman, Regularity of the free-boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101 (1979), 1193–1218.

    Article  MathSciNet  MATH  Google Scholar 

  14. L.A. Caffarelli — A. Friedman, Regularity of the free boundary of a gas in an n-dimensional porous medium, Indiana Univ. Math. J. 29 (1980), 361–391.

    Article  MathSciNet  MATH  Google Scholar 

  15. L.A. Caffarelli — J.L. Vazquez — N.I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, IMA Preprint Series # 191.

    Google Scholar 

  16. M.G. Crandall — L.C. Evans — P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487–502.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.G. Crandall — P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans Amer. Math. Soc. 277 (1983), 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  18. CM. Dafermos — Asymptotic behaviour of solutions of hyperbolic laws, in Bifurcation Phenomena in Mathematical Physics and related Topics, Proceedings NATO Adv Study Inst. in Cargese, Corsica, 1979, 521–533.

    Google Scholar 

  19. B.E.J. Dahlberg — C.E. Kenig, Nonnegative solutions of the porous medium equation, Comm. P.D.E. 9 (1984), 409–437.

    Article  MathSciNet  MATH  Google Scholar 

  20. R.T. Di Perna, Decay and asymptotic behaviour of solutions to nonlinear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 24 (1975), 1047–71.

    Article  Google Scholar 

  21. A. Friedman — S. Kamin, The asymptotic behaviour of a gas in an n- dimensional porous medium, Trans. Amer. Math. Soc. 262 (1980), 551–563.

    MathSciNet  MATH  Google Scholar 

  22. M. Gurtin — R.C Mac Camy, On the diffusion of biological populations, Mathematical Biosciences 33 (1977), 35–49.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Kamin, The asymptotic behaviour of the solution of the filtration equation, Israel J. Math. 14 (1973), 76–78.

    Article  MathSciNet  Google Scholar 

  24. B. Knerr, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381–415.

    Article  MathSciNet  MATH  Google Scholar 

  25. S.N. Kruzhkov, Generalized solutions of first order nonlinear equations in several independent variables, I, Mat. Sb. 70(112) (1966), 394–415;

    MATH  Google Scholar 

  26. S.N. Kruzhkov, Generalized solutions of first order nonlinear equations in several independent variables, lap. II. Mat. Sb. 72(114) (1967), 93–116 (in Russian).

    Google Scholar 

  27. A.A. Lacey — J.R. Ockendon — A.B. Tayler, ‘Waiting-time’ solutions of a nonlinear diffusion equation, SIAM J. Appl. Math. 42 (1982), 1252–1264.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Applied Math. 10 (1957), 537–566.

    Article  MathSciNet  MATH  Google Scholar 

  29. P.L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Math. #69, Pitman, Boston, 1982.

    MATH  Google Scholar 

  30. P.L. Lions, — P.E. Souganidis, — J.L. Vazquez, A degenerate viscosity approximation to the eikonal equation in several space dimensions, to appear.

    Google Scholar 

  31. T.-P. Liu, — M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Diff. Equations 51 (1984), 419–441.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Muskat, The Flow of Homogeneous Fluids through Porous Media, Mc Graw-Hill, New York, 1937.

    MATH  Google Scholar 

  33. O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transi. (2) 26 (1983), 95–172.

    Google Scholar 

  34. O.A. Oleinik, — A.S. Kalashnikov, Gzhou Y.L., The Cauchy problem and boundary problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 667–704 (in Russian).

    MathSciNet  Google Scholar 

  35. E.S. Sabinina, On the Cauchy problem for the equation of nonstationary gas filtration in several space dimensions, Dokl. Akad. Nauk. SSSR 136 (1961), 1034–1037.

    MathSciNet  Google Scholar 

  36. J.L. Vazquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of a gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), 507–527.

    Article  MathSciNet  MATH  Google Scholar 

  37. J.L. Vazquez, Large-time behaviour of the solutions of the one-dimensional porous media equation, in Free-Boundary Problems: Theory and Applications, vol. I, A. Fasano and M. Primicerio eds., Pitman’s Research Notes in Math. # 78, 1983, 167–177.

    Google Scholar 

  38. J.L. Vazquez, The interfaces of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 285 (1984), 717–737.

    Article  MathSciNet  MATH  Google Scholar 

  39. J.L. Vazquez, Behaviour of the velocity of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 286 (1984), 787–802.

    Article  MathSciNet  MATH  Google Scholar 

  40. Ya. B. Zeldovich — Yu. P. Raizer, Physics of shock-waves and high-temperature hydrodynamic phenomena, Vol. II, Academic Press, New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Vazquez, J.L. (1987). Hyperbolic Aspects in the Theory of the Porous Medium Equation. In: Antman, S.S., Ericksen, J.L., Kinderlehrer, D., Müller, I. (eds) Metastability and Incompletely Posed Problems. The IMA Volumes in Mathematics and Its Applications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8704-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8704-6_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8706-0

  • Online ISBN: 978-1-4613-8704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics