Skip to main content

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 3))

Abstract

A compressible heat-conducting homogeneous Newtonian fluid is described by the following system of equations for the velocity v, density ρ, and temperature θ at position x and time t:

$$\begin{array}{*{20}{c}} {\rho \left( {x,t} \right){{v}_{t}}\left( {x,t} \right) = - \rho \left( {x,t} \right)v\left( {x,t} \right)\bullet \nabla v\left( {x,t} \right)} \\ { - \nabla \pi \left( {p\left( {x,t} \right),\theta \left( {x,t} \right)} \right)} \\ { + \nabla \bullet \left[ {\mu \left( {\rho \left( {x,t} \right),\theta \left( {x,t} \right)} \right)\nabla v\left( {x,t} \right)} \right]} \\ \end{array}$$
((1.1))
$${{\rho }_{{\text{t}}}}({\text{x,t) = - v(x,t)}} \bullet \nabla \rho ({\text{x}},{\text{t}}){\text{ - }}\rho ({\text{x}},{\text{t}})\nabla \bullet {\text{v(x,t)}}$$
((1.2))
$$\frac{\partial }{{\partial {\text{t}}}}\varepsilon (\rho ({\text{x}},{\text{t}}),{\mkern 1mu} \theta ({\text{x}},{\text{t}})){\text{ = }}\nabla \bullet [\kappa (\rho ({\text{x}},{\text{t}}),{\mkern 1mu} \theta ({\text{x}},{\text{t}})\nabla \theta ({\text{x}},{\text{t}})]$$
((1.3))

Here and below, we denote partial derivatives with subscripts. The functions [0,∞) × [0, ∞) ∋ (ρ, θ) → π (ρ, θ), μ (ρ, θ), ε(ρ, θ), κ(ρ, θ) are prescribed constitutive functions, π represents a modified pressure, μ the viscosity, ε the internal energy, and κ the thermal conductivity. These constitutive functions are usually required to satisfy

$${{\pi }_{\rho }} > 0,{\mkern 1mu} \mu \geqslant 0,{\mkern 1mu} {{\varepsilon }_{\theta }} > 0,{\mkern 1mu} \kappa > {\text{0}}$$
((1.4))

Equations (1.1), (1.2), (1.3) are respectively the Navier-Stokes equations, the continuity equation, and the heat equation. If ρ and θ are regarded as given positive-valued functions, then (1.1) is a semilinear parabolic system for ν when μ is everywhere positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • G. Andrews, (1980) On the existence of solutions to the equation utt = uxxt + σ(ux)x, J. Diff. Eq. 35, 200–231.

    Article  Google Scholar 

  • S.S. Antman & Guo Zhong-heng, (1984) Large shearing oscillations of incompressible nonlinearly elastic bodies, J. Elasticity 14, 249–262.

    Article  MathSciNet  MATH  Google Scholar 

  • S.S. Antman & R. Malek-Madani, (1986a) Travelling waves in viscoelastic media and shock structure in elastic media, in preparation.

    Google Scholar 

  • S.S. Antman & R. Malek-Madani, (1986b) Existence and uniqueness of solutions to an initial-boundary value problem of nonlinear viscoelasticity, in preparation.

    Google Scholar 

  • S.S. Antman & R.C. Rogers, (1986) Steady-state problems of nonlinear electro-magneto-thermo-elasticity, Arch. Rational Mech. Anal., to appear.

    Google Scholar 

  • C.C. Conley & J.A. Smoller, (1973) Topological methods in the theory of shock waves, Proc. Symp. Pure Math. 23, Amer. Math. Soc, 293–302.

    Google Scholar 

  • C.M. Dafermos, (1969) The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity, J. Differential Equations 6, 71–86.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • C.M. Dafermos, (1984) Discontinuous thermokinetic processes, in Truesdell (1984), 211–218.

    Google Scholar 

  • I.M. Gel’fand, (1959) Some problems in the theory of quasilinear equations, Uspekhi Mat. Nauk 14, 87–158; English Transi., Amer. Math. Soc. Transi. (2), 29, 1963.

    MATH  Google Scholar 

  • J.M. Greenberg, (1969) On the existence, uniqueness and stability of solutions fo the equations ρ0Xtt = E(XX)XXX + λ XXXt., J. Math. Anal. Appl. 25, 575–591.

    Article  MathSciNet  MATH  Google Scholar 

  • J.M. Greenberg, R.C. MacCamy, & V.J. Mizel, (1968) On the existence, uniqueness and stability of solutions of the equation σ’(uX)uXX + λuxtx. = ρ0uxtx.., J. Math. Mech. 17, 707–728.

    MathSciNet  MATH  Google Scholar 

  • R. Hagan & M. Slemrod (1983), The viscosity-capillarity admissibility criterion for shocks and phase transitions, Arch. Rational Mech. Anal. 83, 333–361.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • E. Hopf, (1950) The partial differential equation ut + uuX = μuXX, Comm. Pure Appl. Math. 3, 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Ya. I. Kanel’, (1968) On a model system of equations of one-dimensional gas motion, (in Russian) Diff. Urav. 4, 721–734. Engl. Trans., Diff. Eqs, 4, 374–380.

    MathSciNet  Google Scholar 

  • T.P. Liu, (1975) The Riemann problem for general systems of conservation laws, J. Diff. Eqs. 18, 218–234.

    Article  MATH  Google Scholar 

  • R.C. MacCamy, (1970) Existence, uniqueness and stabilty of utt = \( {{\text{u}}_{\text{tt}}}{ = }\frac{\partial }{{\partial {\text{x}}}}(\sigma {(}{{\text{u}}_{\text{x}}}{) + }\lambda {(}{{\text{u}}_{\text{x}}}{)}{{\text{u}}_{\text{xt}}}{)} \), Indiana Univ. Math. J. 20, 231–238.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Majda & R. Pego, (1985) Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs., to appear.

    Google Scholar 

  • C. Truesdell, (1984), Rational Thermodynamics, 2nd edn., Springer Verlag.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Antman, S.S., Malek-Madani, R. (1987). Dissipative Mechanisms. In: Antman, S.S., Ericksen, J.L., Kinderlehrer, D., Müller, I. (eds) Metastability and Incompletely Posed Problems. The IMA Volumes in Mathematics and Its Applications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8704-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8704-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8706-0

  • Online ISBN: 978-1-4613-8704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics