Skip to main content

Evolution of Wing Polymorphism and Its Impact on Life Cycle Adaptation in Insects

  • Conference paper
Book cover The Evolution of Insect Life Cycles

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Wing length dimorphism is very common among the Insecta, particularly in the large orders Coleoptera, Orthoptera, Hemiptera, and Homoptera. There is no single genetic mechanism underlying the trait, both single locus systems and polygenic systems being found (Table 13.1). The evolution and maintenance of wing dimorphisms is undoubtedly due in many, if not most, cases to spatial and temporal heterogeneity in the environment. The importance of such factors has been well demonstrated for pond skaters, Gerris spp. (Vepsäläinen 1973, 1974a, b, 1978) and leafhoppers (Denno 1976, 1978, 1979, Denno et al., 1980). In both these groups (Hemiptera and Homoptera) wing form appears to have a polygenic basis with considerable genotype-environment interaction (Honek 1976a, b, Harrison 1980). There is reasonable evidence that wing dimorphism in some coleopteran species is maintained by environmental heterogeneity (den Boer 1970, 1971, 1981; Meijer 1974; Stein 1977). In this order the inheritance of wings may be either controlled by a single locus, two-allele system or by several loci showing environmental interactions (Table 13.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammar, E.D.: Factors related to the two wing forms in Javesella pellucida (FAB) (Homoptera: Delphacidae). Z. Ang. Entomol. 74, 211–216 (1973).

    Article  Google Scholar 

  • Aukema, B.: Winglength determination in relation to dispersal by flight in two wing dimorphic species of Calathus bonelli (Coleoptera, Carabidae) Abstract, XVII Int. Congr. Entomol. (1984).

    Google Scholar 

  • Bland, G., Nutting, W.L.: A histological and biometrical study of wing development in the grasshopper Melanoplus lakinus. Ann. Entomol. Soc. Am. 62, 419–436 (1969).

    Google Scholar 

  • Bowden, S.R.: A recessive lethal, “wingless” in Pieris napi L. (Lep., Pieridae). Entomologist 96, 52 (1963).

    Google Scholar 

  • Boer, P.J. den: On the significance of dispersal power for populations of carabid-beetles (Coleoptera, Carabidae). Oecologia 4, 1–28 (1970).

    Article  Google Scholar 

  • Boer, P.J. den: (ed.). Dispersal and dispersal power of Carabid beetles. Misc. Papers 8, Wageningen: Veenman and Zonen N.V. (1971).

    Google Scholar 

  • Boer, P.J. den: On the survival of populations in a heterogeneous and variable environment. Oecologia 50, 39–53 (1981).

    Article  Google Scholar 

  • Buschinger, A.: Genetish Bendigte entstehung gefliigelter weibchen bei der sklavenhaltenden ameise Harpagoxenus sublaevis (Nyl.) (Genetically induced origin of alate females in the slavemaker ant Harpagoxenus sublaevis Hymenoptera formicidae). Insectes Soc. 25(2), 163–172 (1978).

    Article  Google Scholar 

  • Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory. New York: Harper & Row, 1970.

    Google Scholar 

  • Denno, R.F.: Ecological significance of wing polymorphism in Fulgoroidea which inhabit tidal salt marshes. Ecol. Entomol. 1, 257–266 (1976).

    Article  Google Scholar 

  • Denno, R.F.: The optimum population strategy for planthoppers (Homoptera: Delphacidae) in stable marsh habitats. Can. Entomol. 10, 135–142 (1978).

    Article  Google Scholar 

  • Denno, R.F.: The relation between habitat stability and the migratory tactics of planthoppers (Homoptera: Delphacidae). Misc. Publ. Entomol. Soc. Am. 11, 41–49 (1979).

    Google Scholar 

  • Denno, R.F., Raupp, M.J., Tallamy, D.W., Reichelderfer, C.F.: Migration in heterogeneous environments: differences in habitat selection between the wing forms of the dimorphic planthopper, Prokelisia marginata (Homoptera: Delphacidae). Ecology 61, 859–867 (1980).

    Article  Google Scholar 

  • Dingle, H.: Adaptive variation in the evolution of insect migration. In: Movement of Highly Mobile Insects: Concepts and Methodologies in Research. Rabb, R.L., Kennedy, G.G., (eds.). North Carolina State University: University Graphics, 1979, pp. 64–87.

    Google Scholar 

  • Dingle, H.: Function of migration in the seasonal synchronization of insects. Entomol. Exp. Appl. 31, 36–48 (1982).

    Article  Google Scholar 

  • Falconer, D.S.: Introduction to quantitative genetics. 2nd Ed. New York: Longman, 1981.

    Google Scholar 

  • Ghouri, A.S.K. and McFarlane, J.E.: Occurrence of a macropterous form of Gryllodes sigillatus (Walker) (Orthoptera: Gryllidae) in laboratory culture. Can. J. Zool. 36, 837–838 (1958).

    Article  Google Scholar 

  • Gibbs, D.: Reversal of pupal diapause in Sarcophaga argyrostoma by temperature shifts after puparium formation. J. Inst. Phys. 21, 1179–1186 (1975).

    Article  CAS  Google Scholar 

  • Guíbe, J.: Contribution a l’étude d’une espece: Apterina pedestris Meigen (Diptera). Bull. Biol. France Belg. Suppl. 26, 1–112 (1939).

    Google Scholar 

  • Harrison, R.G.: Flight polymorphism in the field cricket Gryllus pennsylvanicus. Oecologia 40, 125–132 (1979).

    Google Scholar 

  • Harrison, R.G.: Dispersal polymorphism in insects. Annu. Rev. Ecol. Syst. 11, 95–118 (1980).

    Article  Google Scholar 

  • Honek, A.: Factors influencing the wing polymorphism in Pyrrhocoris apterus (Heteroptera, Pyrrhocoridae). Zool. Jb. Syst. Bd. 103, 1–22 (1976a).

    Google Scholar 

  • Honek, A.: The regulation of wing polymorphism in natural populations of Pyrrhocoris apterus (Heteroptera, Pyrrhocoridae). Zool. Jb. Syst. Bd. 103, 547–570 (1976b).

    Google Scholar 

  • Honek, A.: Independent response of 2 characters to selection for insensitivity to photoperiod in Pyrrhocoris apterus. Experientia, 35, 762–763 (1979).

    Article  Google Scholar 

  • Jackson, D.T.: The inheritance of long and short wings in the weevil, Sitona hispidula, with a discussion of wing reduction among beetles. Trans. R. Soc. Edinburgh 55, 665–735 (1928).

    Google Scholar 

  • Kearns, C.W.: Method of wing inheritance in Dephalonomia gallicola Ashmead (Bethylidae: Hymenoptera). Ann. Entomol. Soc. Am. XXVII, 533–541 (1934).

    Google Scholar 

  • Kimura, T., Masaki, S.: Brachypterism and seasonal adaptation in Orgyia thyellina Butler (Lepidoptera, Lymantriidae). Kontŷu 45, 97–106 (1977).

    Google Scholar 

  • Kvenberg, J.E. and Jones, P.A.: Comparison of alate offspring produced by two biotypes of the greenbug. Environ. Entomol. 3, 407–408 (1974).

    Google Scholar 

  • Lamb, R.J., MacKay, P.A.: Variability in migratory tendency within and among natural populations of the pea aphid, Acyrthosiphon pisum. Oecologia 39, 289–299 (1979).

    Article  Google Scholar 

  • Langor, D.W., Larson, D.J.: Alary polymorphism and life history of a colonizing ground beetle, Bemhidion lampros. Herbst (Coleoptera: Carabidae) Coleop. Bull. 37, 365–377 (1983).

    Google Scholar 

  • Lindroth, C.H.: Inheritance of wing dimorphism in Pterostichus anthracinus Ill. Hereditas 32, 37–40 (1946).

    Article  PubMed  CAS  Google Scholar 

  • Mahmud, F.S.: Alary polymorphism in the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae). Entomol. Exp. 28, 47–53 (1980).

    Article  Google Scholar 

  • Meijer, J.: A comparative study of the immigration of carabids (Coleoptera, Carabidae) into a New Polder. Oecologia 16, 185–208 (1974).

    Article  Google Scholar 

  • Mochida, O.: A strain producing abundance brachypterous adults in Nilaparvata lugens (Homoptera: Delphacidae). Entomol. Exp. Appl. 18, 465–471 (1975).

    Article  Google Scholar 

  • Roff, D.A.: The cost of being able to fly: a study of wing polymorphism in two species of crickets. Oecologia 63, 30–37 (1984).

    Article  Google Scholar 

  • Roff, D.A.: The evolution of wing dimorphism in insects. Evolution (in press) (1986a).

    Google Scholar 

  • Roff, D.A.: The genetic basis of wing dimorphism in the sand cricket, Gryllus firmus and its relevance to the evolution of wing dimorphism in insects. Heredity (in press) (1986b).

    Google Scholar 

  • Southwood, T.R.E.: A hormonal theory of the mechanism of wing polymorphism in heteroptera. Proc. R. Entomol. Soc. Lond. (A) 36, 63–66 (1961).

    Google Scholar 

  • Stein, W.: Zur Vererbung des Flugeldimorphismus bei Apion virens Herbst (Col., Curculinoidae). Z. Ang. Entomol. 74, 62–63 (1973).

    Article  Google Scholar 

  • Stein, W.: Die Beziehung zwischen Biotop-Alter und Auftreten der Kurzflugeligkeit bei populationen dimorpher Rüsselkäfer-Arten (Col., Curculionidae). Zeitschrift Angew. Entomol. 83 (1), 37–39 (1977).

    Article  Google Scholar 

  • Taylor, V.A.: The adaptive and evolutionary significance of wing polymorphism and parthenogenesis in Ptinella Motschulsky (Coleoptera: Ptiliidae) 6, 89–98 (1981).

    Google Scholar 

  • Tazima, Y.: The genetics of the silk worm. London: Logos Press, 1964.

    Google Scholar 

  • Utida, S.: Density dependent polymorphism in the adult of Callosobrachus maculatus (Coleoptera, Brachidae). J. Stored Prod. Res. 8, 111–126 (1972).

    Article  Google Scholar 

  • Veazey, J.N., Kay, C.A.R., Walker, T.J. and Whitcomb, W.H.: Seasonal abundance, sex ratio and macroptery of field crickets in northern Florida. Ann. Entomol. Soc. Am. 69, 374–380 (1976).

    Google Scholar 

  • Vepsäläinen, K.: The distribution and habitats of Gerris Fabr. species (Heteroptera, Gerridae) in Finland. Ann. Zool. Fennici 10, 419–444 (1973).

    Google Scholar 

  • Vepsäläinen, K.: The life cycles and wing lengths of Finnish Gerris Fabr. species (Heteroptera, Gerridae). Acta Zool. Fennica 141, 1–73 (1974a).

    Google Scholar 

  • Vepsäläinen, K.: Determination of wing length and diapause in water striders (Gerris Fabr., Heteroptera). Hereditas 77, 163–175 (1974b).

    Article  PubMed  Google Scholar 

  • Vepsäläinen, K.: Wing dimorphism and diapause in Gerris: determination and adaptive significance. In: Evolution of Insect Migration and Diapause. Dingle, H. (ed.). New York: Springer-Verlag, 19781978.

    Google Scholar 

  • Wigglesworth, V.B.: Insect polymorphism—a tentative synthesis. Symp. R. Entomol. Soc. Lond. 1, 103–113 (1961).

    Google Scholar 

  • Zera, A.J., Innes, D.T., Saks, M.E.: Genetic and environmental determinants of wing polymorphism in the water strider, Limnoporus canaliculatus. Evolution 37, 513–522 (1983).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Roff, D. (1986). Evolution of Wing Polymorphism and Its Impact on Life Cycle Adaptation in Insects. In: Taylor, F., Karban, R. (eds) The Evolution of Insect Life Cycles. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8666-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8666-7_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8668-1

  • Online ISBN: 978-1-4613-8666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics