Néron Models

  • M. Artin


This is an exposition of the main theorem of Néron’s paper [2], and of Raynaud’s subsequent work on the problem.


Local Ring Abelian Variety Prime Divisor Finite Type Smooth Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kodaira, K. On compact analytic surfaces, II. Ann. Math., 77 (1963), 563–626.MATHCrossRefGoogle Scholar
  2. [2]
    Néron, A. Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. Math. I.H.E.S., 21 (1964).Google Scholar
  3. [3]
    Raynaud, M. Modèles de Néron. C.R. Acad. Sci. Paris, 262 (1966), 413–416.Google Scholar
  4. [4]
    Raynaud, M. Faisceaux Amples sur les Schémes en groupes et les Espaces Homogènes. Springer Lecture Notes, 119. Springer-Verlag: Berlin, 1970.CrossRefGoogle Scholar
  5. [5]
    Raynaud, M. Spécialization du foncteur de Picard. Publ. Math. I.H.E.S., 38, (1971).Google Scholar
  6. [6]
    Weil, A. Variétés Abéliennes et Courbes Algébriques. Hermann, Paris, 1948.MATHGoogle Scholar
  7. [7]
    Zariski, O. The reduction of singularities of an algebraic surface. Ann. Math., 40 (1939), 639–689.MathSciNetCrossRefGoogle Scholar
  8. [8]
    SGA3. Séminaire de Geométrie Algébrique 1964: Schémas en Groupes, éxposé XVIII. Lecture Notes in Mathematics, 152. Springer-Verlag: Berlin, 1970.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • M. Artin

There are no affiliations available

Personalised recommendations