Skip to main content

Matching between Right Ventricle and Pulmonary Bed

  • Chapter
Ventricular/Vascular Coupling

Abstract

The concept of ventricle-load matching may create new insight into ventricular vascular coupling. The term “matching” is borrowed from the engineering sciences, where it means the load conditions under which a power generator yields maximum output power to the load. For example, an electrical battery connected to a load resistor achieves maximum output power when the load resistance equals the internal battery resistance. The efficiency of the source-load system will be 50%, that is, half the energy drawn from the battery will be developed as heat in the battery itself by energy loss in the source resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Aarseth, P., 1972. Studies on the depot function of the pulmonary vascular bed. Thesis. Universitetsforlaget, Oslo, Norway.

    Google Scholar 

  • Abel, F. L., and Waldhausen, J. A. 1967. Effects of alterations in pulmonary vascular resistance on right ventricular function. J. Thorac. Cardiovasc. Surg. 54:885–894.

    Google Scholar 

  • Armour, J. A., Pace, J. B., and Randall, W. C. 1970. Interrelationship of architecture and function of right ventricle. Am. J. Physiol. 218:174–179.

    PubMed  CAS  Google Scholar 

  • Bargainer, J. D. 1967. Pulse wave velocity in the main pulmonary artery of the dog. Circ. Res. 20:630–637.

    PubMed  CAS  Google Scholar 

  • Bergel, D. H., and Milnor, W. R. 1965. Pulmonary vascular impedance in the dog. Circ. Res. 16:401–415.

    PubMed  CAS  Google Scholar 

  • Campbell, K. B., Ringo, J. A., Wakav, Y., Klavano, P. A., and Alexander, J. E. 1982. Internal capacitance and resistance allow prediction of right ventricle outflow. Am. J. Physiol. 243:H99–H112.

    PubMed  CAS  Google Scholar 

  • Caro, G. C., and McDonald, D. A. 1961. The relation of pulsatile pressure and flow in the pulmonary vascular bed. J. Physiol. 157:426–453.

    PubMed  CAS  Google Scholar 

  • Dujardin, J. P., Stone, D. N., Forcino, C. D., Paul, L. T., and Pieper, H. P. 1983. Effects of blood volume changes on characteristic impedance of the pulmonary artery. Am. J. Physiol. 242:H197–H202.

    Google Scholar 

  • Elkins, R. C., and Milnor, W. R. 1971. Pulmonary vascular response to exercise in the dog. Circ. Res. 29:591–599.

    PubMed  CAS  Google Scholar 

  • Elkins, R. C., Peyton, M. D., and Greenfield, L. J. 1974. Pulmonary vascular impedance in chronic pulmonary hypertension. Surgery 76:57–64.

    PubMed  CAS  Google Scholar 

  • Elzinga, G., Piene, H., and DeJong, J. P. 1980. Left and right ventricular pump function and consequences of having two pumps in one heart: a study on the isolated cat heart. Circ. Res. 46:564–579.

    PubMed  CAS  Google Scholar 

  • Elzinga, G., and Westerhof, N. 1973. Pressures and flow generated by the left ventricle against different impedances. Circ. Res. 32:178–186.

    PubMed  CAS  Google Scholar 

  • Elzinga, G., and Westerhof, N. 1974. End-diastolic volume and source impedance of the heart. In Guz, A., ed. The Physiological Basis of Starling’s Law of the Heart. CIBA Foundation Symposium 24. Amsterdam: Elsevier, pp. 241–255.

    Google Scholar 

  • Elzinga, G., and Westerhof, N. 1979. How to quantify pump function of the heart. Circ. Res. 44:303–308.

    PubMed  CAS  Google Scholar 

  • Hauge, A., and Nicolaysen, G. 1979. The importance of flow pulsatility for the rate of transvascular fluid filtration in lungs. Physiology 290:569–576.

    CAS  Google Scholar 

  • Hopkins, R. A., Hammon, J. W., McHale, P. A., Smith, P. K., and Anderson, R. W. 1979. Pulmonary vascular impedance analysis of adaptation to chronically elevated blood flow in the awake dog. Circ. Res. 45:267–274.

    PubMed  CAS  Google Scholar 

  • Hopkins, R. A., Hammon, J. W. Jr., Mettale, P. A., Smith, P. K., and Anderson, R. W. 1980. An analysis of the pulsatile hemodynamic responses of the pulmonary circulation to acute and chronic pulmonary venous hypertension in the awake dog. Circ. Res. 47:902–910.

    PubMed  CAS  Google Scholar 

  • Ingram, R. H., Szidon, J. P., Skalak, R., and Fishman, A. P. 1968. Effects of sympathetic nerve stimulation on the pulmonary arterial tree of the isolated lobe perfused in situ. Circ. Res. 22:801–815.

    PubMed  CAS  Google Scholar 

  • Lefevre, J. 1982. Teleonomical representation of the pulmonary arterial bed of the dog by a fractal tree. In Kenner, T., Busse, R., and Hinghofer-Szalkay, H., eds. Cardiovascular System Dynamics: Methods and Measurements. New York: Plenum, pp. 137–146.

    Google Scholar 

  • Lucas, C. L., Wilcox, B. R., and Coulter, N. A. Jr. 1975. Pulmonary vascular response to arterial septal defect closure in children. Surg. Res. 18:571–586.

    Article  CAS  Google Scholar 

  • March, H. W., Ross, J. K., and Lower, R. R. 1962. Observations on the behavior of the right ventricular outflow tract, with reference to its developmental origins. Am. J. Med. 32:835–845.

    Article  PubMed  CAS  Google Scholar 

  • Maughan, W. L., Shoukas, A. A., Sagawa, K., and Weisfeldt, M. L. 1979. Instantaneous pressure-volume relationship of the canine right ventricle. Circ. Res. 44:309–315.

    PubMed  CAS  Google Scholar 

  • Milnor, W. R. 1975. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570.

    PubMed  CAS  Google Scholar 

  • Milnor, W. R., Bergel, D. H., and Bargainer, J. D. 1966. Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ. Res. 19:467–480.

    PubMed  CAS  Google Scholar 

  • Milnor, W. R., Conti, C. R., Lewis, K. B., and O’Rourke, M. F. 1969. Pulmonary arterial pulse wave velocity and impedance in man. Circ. Res. 25:637–649.

    PubMed  CAS  Google Scholar 

  • O’Rourke, M. F. 1982. Vascular impedance in studies of arterial and cardiac function. Physiol. Rev. 62:570–623.

    PubMed  Google Scholar 

  • Pace, J. B. 1971. Sympathetic control of pulmonary vascular impedance in anesthetized dogs. Circ. Res. 29:555–568.

    PubMed  CAS  Google Scholar 

  • Pace, J. B., Cox, R. H., Alvarez-Vera, F., and Karreman, G. 1972. Influence of sympathetic nerve stimulation on pulmonary hydraulic input power. Am. J. Physiol. 222:196–201.

    PubMed  CAS  Google Scholar 

  • Pace, J. B., Keefe, W. F., Armour, J. A., and Randall, W. C. 1969. Influence of sympathetic nerve stimulation on right ventricular outflow tract pressures in anesthetized dogs. Circ. Res. 24:397–407.

    PubMed  CAS  Google Scholar 

  • Piene, H. 1976a. The influence of pulmonary blood flow rate on vascular impedance and hydraulic power in the sympathetically and nonadrenaline stimulated cat lung. Acta Physiol. Scand. 98:44–53.

    Article  PubMed  CAS  Google Scholar 

  • Piene, H. 1976b. Influence of vessel distension and myogenic tone on pulmonary arterial input impedance: a study using a computer model of rabbit lung. Acta Physiol. Scand. 98:55–66.

    Google Scholar 

  • Piene, H. 1976c. Some physical properties of the pulmonary arterial bed deduced from pulsatile arterial flow and pressure. Acta Physiol. Scand. 98:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Piene, H. 1976d. Improved left ventricular performance by the transmission of pulse waves through the pulmonary vascular bed. Acta Physiol. Scand. 98:450–456.

    Article  PubMed  CAS  Google Scholar 

  • Piene, H. 1980. Interaction between the right heart ventricle and its arterial load: a quantitative solution. Am. J. Physiol. 238:H932–H937.

    PubMed  CAS  Google Scholar 

  • Piene, H. 1984. Impedance matching between ventricle and load. Ann. Biomed. Eng. 12:191–207.

    Article  PubMed  CAS  Google Scholar 

  • Piene, H., and Covell, J. W. 1983. Local auxotonic systolic force and work in canine right ventricular free wall. Am. J. Physiol. 244:H186–193.

    PubMed  CAS  Google Scholar 

  • Piene, H., and Hauge, A. 1976. Reduction of pulsatile hydraulic power in the pulmonary circulation caused by moderate vasoconstriction. Cardiovasc. Res. 10:503–513.

    Article  PubMed  CAS  Google Scholar 

  • Piene, H., and Sund, T. 1979. Flow and power output of right ventricle facing load with variable input impedance. Am. J. Physiol. 237:H125–H130.

    PubMed  CAS  Google Scholar 

  • Piene, H., and Sund, T. 1980. Performance of the right ventricle: a pressure plane analysis. Cardiovasc. Res. 14:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Piene, H., and Sund, T. 1981. Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am. J. Physiol. 242:H154–H160.

    Google Scholar 

  • Piene, H., and Sund, T. 1982. Calculation of flow and pressure curves from the ventricular pressure-volume-time relationship and load impedance. In Kenner, T., Busse, R., and Hinghofer-Szalkay H., eds. Cardiovascular System Dynamics: Models and Measurements. New York: Plenum, pp. 47–55.

    Google Scholar 

  • Pouleur, H., Lefevre, J., van Eyil, C., Jaumin, P. M., and Charlier, A. A. 1978. Significance of pulmonary input impedance in right ventricular performance. Cardiovasc. Res. 12:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Raines, R. H., Le Winter, M. M., and Covell, J. W. 1976. Regional shortening patterns in canine right ventricle. Am. J. Physiol. 231:1395–1400.

    PubMed  CAS  Google Scholar 

  • Reuben, S. R., and Kitchin, A. H. 1975. Pulmonary artery input impedance in pulmonary hypertension. Prog. Resp. Res. 9:261–266.

    Google Scholar 

  • Reuben, S. R., Swadling, J. P., Gersh, B. J., and Lee, G. de J. 1971. Impedance and transmission properties of the pulmonary arterial system. Cardiovasc. Res. 5:1–9.

    Article  Google Scholar 

  • Rushmer, R. F. 1976. Cardiovascular Dynamics. Philadelphia: Saunders, pp. 91–96.

    Google Scholar 

  • Saraoff, S. J., and Berglund, E. 1954. Ventricular function. I. Starlings law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation 9:706–718.

    Google Scholar 

  • Shroff, S., Janicki, J. S., and Weber, K. T. 1983. Left ventricle systolic dynamics in terms of its chamber mechanical properties. Am. J. Physiol. 245:H110–H124.

    PubMed  CAS  Google Scholar 

  • Suga, H., and Sagawa, K. 1974. Instantaneous pressure-volume relationships and their ratio in the excised supported canine left ventricle. Circ. Res. 35:117–126.

    PubMed  CAS  Google Scholar 

  • Suga, H., Sagawa, K., and Shoukas, A. A. 1973. Load independence of the instantaneous pressure-volume relationship of the canine left ventricle and effects of norepinephrine on the ratio. Circ. Res. 37:320–330.

    Google Scholar 

  • Sund, T., and Piene, H. 1983. Right ventricular mechanics: a comparison of models. Cardiovasc. Res. 17:320–330.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. G. 1964. Wave travel in arteries and the design of the cardiovascular system. In: “Pulsatile Blood Flow”, (Ed: E. O. Attinger). New York: McGraw Hill.

    Google Scholar 

  • Thomas, C. E. 1957. The muscular architecture of the ventricles of hog and dog hearts. Am. J. Anat. 101:17–58.

    Article  PubMed  CAS  Google Scholar 

  • Van den Horn, G. J., Westerhof, N., and Elzinga, G. 1984. Interaction of heart and arterial system. Ann. Biomed. Eng. 12:151–162.

    Article  PubMed  Google Scholar 

  • Wilcken, D. E. L., Charlier, A. A., Hoffman, J. I. E., and Guz, A. 1964. Effects of alterations in aortic impedance on the performance of the ventricles. Circ. Res. 14:283–293.

    PubMed  CAS  Google Scholar 

  • Wilcox, B. R., and Lucas, C. L. 1980. Pulmonary input impedance in children with left-right shunt. Surg. Res. 29:40–49.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Piene, H. (1987). Matching between Right Ventricle and Pulmonary Bed. In: Yin, F.C.P. (eds) Ventricular/Vascular Coupling. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8634-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8634-6_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8636-0

  • Online ISBN: 978-1-4613-8634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics