From Real Analysis to Probability: Autobiographical Notes

  • Marius Iosifescu
Part of the Applied Probability book series (APPLIEDPROB, volume 1)

Abstract

I was born on 12 August 1936 in Piteşti, then a small town of some 20,000 inhabitants situated on the river Argeş, about 120 km north-west of Bucharest. It has now become an important industrial centre with more than 150,000 inhabitants. During my childhood, Piteşti enjoyed the reputation of being a clean and attractive town with very good secondary schools modelled after the French lycées. My parents were teachers there, and as a child I thought I would also become a teacher.

Keywords

Europe Expense Settling Defend Fermat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications and References

  1. [1]
    Andreian Cazacu, Cabina and Marcus, S. (1983) Simion Stoilow (in Romanian with a French summary). Ed. §tiinlificâ si enciclopedicâ, Bucure§ti.Google Scholar
  2. [2]
    Bell, E. T. (1937) Men of Mathematics. Simon and Schuster, New York.MATHGoogle Scholar
  3. [3]
    Bloch, S. (1984) The proof of the Mordell conjecture. Math. Intelligencer 6 (2), 41–47.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Bonsall, F. F. (1982) A down-to-earth view of mathematics. Amer. Math. Monthly 89, 8–15.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Borel, A. (1983) Mathematics: Art and science. Math. Intelligencer 5 (4), 9–17.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Bruckner, A. M. (1978) Differentiation of Real Functions. Lecture Notes in Mathematics 659, Springer-Verlag, Berlin.Google Scholar
  7. [7]
    Chytil, M. K. (1982) The elucidation of the concept of biomathematics. In Progress in Cybernetics and System Research VI, Hemisphere, Washington, DC, 35–40.Google Scholar
  8. [8]
    Ciucu, G. and Theodorescu, R. (1960) Processes with Complete Connections (in Romanian). Ed. Acad. R.P. Romîne, Bucure§ti.Google Scholar
  9. [9]
    David, E. E., JR. (1984) Toward renewing a threatened resource: Findings and recommendations of the ad hoc committee on resources for the mathematical sciences. Notices Amer. Math. Soc. 31, 141–145.Google Scholar
  10. [10]
    Denjoy, A. (1964) Probabilités confirmant l’hypothèse de Riemann sur les zéros de C(s). C.R. Acad. Sci. Paris 259, 31, 43–3145.Google Scholar
  11. [11]
    Doeblin, W. (1940) Remarques sur la théorie métrique des fractions continues. Compositio Math. 7, 353–371.MathSciNetMATHGoogle Scholar
  12. [12]
    Dyson, J. F. (1983) Unfashionable pursuits. Math. Intelligencer 5 (3), 47–54.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Erdös, P. and Ulam, S. (1971) Some probabilistic remarks on Fermat’s last theorem. Rocky Mountain J. Math. 1, 613–616.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Golstein, E. and Youdine, D. (1973) Problèmes particuliers de la programmation linéaire. Mir, Moscow.MATHGoogle Scholar
  15. [15]
    Grigorescu, 5. and Iosifescu, M. (1982) Dependence with Complete Connections and Its Applications (in Romanian). Ed. stiin(ificä si enciclopedicä, Bucuresti.Google Scholar
  16. [16]
    Halmos, P. R. (1980) The heart of mathematics. Amer. Math. Monthly 87, 519–524.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Hardy, G. H. (1969) A Mathematician’s Apology (with a Foreword by C. P. Snow ). Cambridge University Press, London.Google Scholar
  18. [18]
    Herrndorf, N. (1983) The invariance principle for gyp-mixing sequences. Z. Wahrscheinlichkeitsth. 63, 97–109.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Hruska, V. (1946) Une note sur les fonctions aux valeurs intermédiaires. G S asopis Pést. Mat. Fys. 71, 67–69.MathSciNetGoogle Scholar
  20. [20]
    Ionescu Tulcea, C. T. (1959) On a class of operators occurring in the theory of chains of infinite order. Canad. J. Math. 11, 112–121.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Iosifescu, M. (1956) On a theorem of A. Marchaud (in Romanian). Corn. Acad. R.P.R. 6, 1169–1171.MathSciNetMATHGoogle Scholar
  22. [22]
    Iosifescu, M. (1957) On the product of two derivatives (in Romanian). Corn. Acad. R.P.R. 7, 319–321.MATHGoogle Scholar
  23. [23]
    Iosifescu, M. (1958) Sur les fonctions continues dont les ensembles de niveau sont au plus dénombrables. Rev. Math. Pures Appl. 3, 439–441.MathSciNetMATHGoogle Scholar
  24. [24]
    Iosifescu, M. (1959) Propriétés différentielles des fonctions jouissant de la propriété de Darboux. C.R. Acad. Sci. Paris 248, 1918–1919.MathSciNetMATHGoogle Scholar
  25. [25]
    Iosifescu, M. (1959) Ueber die differentialen Eigenschaften der reellen Funktionen einer reellen Veraenderlichen. Rev. Math. Pures Appl. 4, 457–466.MathSciNetMATHGoogle Scholar
  26. [26]
    Iosifescu, M. (1959) Conditions that the product of two derivatives be a derivative (in Russian). Rev. Math. Pures Appl. 4, 641–649.MathSciNetMATHGoogle Scholar
  27. [27]
    Iosifescu, M. (1959) Ueber eine Erweiterung eines Satzes von S. Stoilow. Rev. Math. Pures Appl. 4, 725–729.MathSciNetMATHGoogle Scholar
  28. [28]
    Iosifescu, M. (1963) Random systems with complete connections with an arbitrary set of states (in Russian). Rev. Math. Pures Appl. 8, 611–645; Addenda, ibid. 9, 91–92. ( English translation obtainable from Addis Translations, Menlo Park, Calif. )Google Scholar
  29. [29]
    Iosifescu, M. (1968) La loi du logarithme itéré pour une classe de variables aléatoires dépendantes. Teor. Verojatnost. i. Primenen. 13, 315–325; adendum ibid. 15 (1970), 170–171. (English translation: Theory Prob. Appl. 13 (1968), 304–313; 15 (1970), 160.)Google Scholar
  30. [30]
    Iosifescu, M. (1972) On Strassen’s version of the loglog law for some classes of dependent random variables. Z. Wahrscheinlichkeitsth. 24, 155–158.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    Iosifescu, M. (1974) On the application of random systems with complete connections to the theory off-expansions. Progress in Statistics I (European Meeting of Statisticians, Budapest, 1972), Colloq. Math. Soc. J. Bolyai 9, ed. J. Gani et al., North-Holland, Amsterdam, 335–365.Google Scholar
  32. [32]
    Iosifescu, M. (1977) Limit theorems for 9-mixing sequences. A survey. Proc. 5th Conf. Probability Theory (Brasov, 1974), Ed. Acad. R.S. România, Bucuresti, 51–57.Google Scholar
  33. [33]
    Iosifescu, M. (1977) A Poisson law for i/i-mixing sequences establishing the truth of a Doeblin’s statement. Rev. Roumaine Math. Pures Appl. 22, 1441–1447.Google Scholar
  34. [34]
    Iosifescu, M. (1977/78) Dependence with complete connections. Lecture notes, Fachbereich Mathematik, Johannes Gutenberg-Universität in Mainz. [Revised version in Sequential Methods in Statistics (Papers, XVIIIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1981 ), Banach Center Publ. 16, PWN, Warsaw, 245–262.Google Scholar
  35. [35]
    Iosifescu, M. (1978) Recent advances in the metric theory of continued fractions. Trans. 8th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes (Prague, 1978), A, Reidel, Dordrecht, 27–40.Google Scholar
  36. [36]
    Iosifescu, M. (1979) The tail structure of nonhomogeneous finite state Markov chains: A survey. In Probability Theory (Papers, VIIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1976), Banach Center Publ. 5, PWN, Warsaw, 125–132.Google Scholar
  37. [37]
    Iosifescu, M. (1980) Recent advances in mixing sequences of random variables. In 3rd Internat. Summer School Probability Theory and Math. Statistics (Varna, 1978 ), B“lgar Akad. Nauk, Sofia, 111–138.Google Scholar
  38. [38]
    Iosifescu, M. (1980) Finite Markov Processes and Their Applications. Wiley, Chichester and Ed. tehnica, Bucharest.Google Scholar
  39. [39]
    Iosifescu, M. (1982) On the random Fermat’s equation. An. Univ. Craiova Ser. Mat. Fiz.-Chim. 10, 61–65.MathSciNetGoogle Scholar
  40. [40]
    Iosifescu, M. (1983) Notes on the general stochastic model for learning. In Studies in Probability and Related Topics: Papers in Honour of Octav Onicescu on His 90th Birthday, ed. M. C. Demetrescu and M. Iosifescu, Nagard, Roma, 287–300.Google Scholar
  41. [41]
    Iosifescu, M. (1984) On the random Riemann hypothesis. Proc. 7th Conf. Probability Theory (Brasov, 1982), Ed. Acad. R.S. România, Bucuresti, 435–450.Google Scholar
  42. [42]
    Iosifescu, M. (1985) Ergodic piecewise monotonic transformations and dependence with complete connections. Proc. 4th Pannonian Symp. Math. Statist. (Bad Tatzmannsdorf, Austria, 1983), A, ed. F. Konecny et al., Akadémiai Kiadó, Budapest and Reidel, Dordrecht, 167–173.Google Scholar
  43. [43]
    Iosifescu, M. and Marcus, S. (1962) Sur un problème de P. Scherk concernant la somme des carrés de deux dérivées. Canad. Math. Bull. 5, 129–132.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    Iosifescu, M. and Spätaru, A. (1973) On denumerable chains of infinite order. Z. Wahrscheinlichkeitsth. 27, 195–214.MATHCrossRefGoogle Scholar
  45. [45]
    Iosifescu, M. and Täutu, P. (1973) Stochastic Processes and Applications in Biology and Medicine: I. Theory; II. Models. Biomathematics, 3 and 4, Ed. Academiei Bucuresti and Springer-Verlag, Berlin.Google Scholar
  46. [46]
    Iosifescu, M. and Theodorescu, R. (1963) Sur la programmation linéaire. C.R. Acad. Sci. Paris 256, 4831–4833.MathSciNetMATHGoogle Scholar
  47. [47]
    Iosifescu, M. and Theodorescu, R. (1969) Random Processes and Learning. Grundlehren der math. Wiessenschaften 150, Springer-Verlag, Berlin.Google Scholar
  48. [48]
    Iosifescu, M., Grigorescu, S., Oprisan, G. and Popescu, G. (1984) Elements of Stochastic Modelling (in Romanian). Ed. stiintificä si enciclopedicä, Bucuresti.Google Scholar
  49. [49]
    Judin, D. B. (1974) Mathematical Methods for Control under Conditions of Incomplete Information (Problems and Methods of Stochastic Programming) (in Russian). Sovetskoe Radio, Moscow.Google Scholar
  50. [50]
    Kalpazidou, Sofia (1985) On a random system with complete connections associated with the continued fraction to the nearer integer expansion. Rev. Roumaine Math. Pures Appl. 30, 527–537.MathSciNetMATHGoogle Scholar
  51. [51]
    Keller, G. (1982) Stochastic stability in some chaotic dynamical systems. Monatsh. Math. 94, 313–333.MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    Kendall, D. G. (1969) Mathematics—a way of looking at life (in Romanian). Gaz. Mat. Ser. A 74, 4–10.Google Scholar
  53. [53]
    Kolbin, V. V. (1977) Stochastic Programming. Reidel, Dordrecht.MATHGoogle Scholar
  54. [54]
    Lang, S. (1984) Circular A-21: A history of bureaucratic encroachment (excerpts). Math. Intelligencer 6 (1), 33–46.CrossRefGoogle Scholar
  55. [55]
    Laue, G. (1980) Remarks on the relation between fractional moments and fractional derivatives of characteristic functions. J. Appl. Prob. 17, 456–466.MathSciNetMATHCrossRefGoogle Scholar
  56. [56]
    Lindley, D. V. (1984) Refereeing. Math. Intelligencer 6 (2), 56–60.MathSciNetCrossRefGoogle Scholar
  57. [57]
    Marchaud, A. (1927) Sur les dérivées et sur les différences des fonctions de variables réelles. J. Math. Pures Appl. 6, 337–425.Google Scholar
  58. [58]
    Marchaud, A. (1933) Sur une condition de quasi-rectificabilité. Fund. Math. 20, 105–116.Google Scholar
  59. [59]
    Marcus, S. (1957) Sur un théorème de M. A. Marchaud et sur les fonctions dérivables presque partout. C.R. Acad. Sci. Paris 244, 2345–2347.MathSciNetMATHGoogle Scholar
  60. [60]
    Marcus, S. (1966) Quelques aspects des travaux roumains dans la théorie des fonctions des variables réelles. Rev. Roumaine Math. Pures Appl. 11, 1123–1138.MathSciNetMATHGoogle Scholar
  61. [61]
    Marcus, S. (1975) From the Romanian Mathematical Thinking (in Romanian). Ed. stiintificâ si enciclopedicâ, Bucuresti.Google Scholar
  62. [62]
    Mihoc, G. (1982) A life for probability. In The Making of Statisticians, ed. J. Gani, Springer-Verlag, New York, 22–37.Google Scholar
  63. [63]
    Norman, M. F. (1972) Markov Processes and Learning Models. Academic Press, New York.MATHGoogle Scholar
  64. [64]
    Onicescu, O. (1981) Quelques réflexions sur les conférences de Brasov sur les probabilités. Proc. 6th Conf. Probability Theory (Bravv, 1979), Ed. Acad. R.S. România, Bucuresti, 11–14.Google Scholar
  65. [65]
    Peligrad, M. (1985) An invariance principle for gyp-mixing sequences. Ann. Prob. 13, 1304–1313.MathSciNetMATHCrossRefGoogle Scholar
  66. [66]
    Popescu, G. (1978) Asymptotic behaviour for random systems with complete connections. I (in Romanian). Stud. Cerc. Mat. 30, 37–68.MathSciNetMATHGoogle Scholar
  67. [67]
    Pruscha, H. (1983) Learning models with continuous time parameter and multivariate point processes. J. Appl. Prob. 20, 884–890.MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    Siegrist, K. (1981) Random evolution processes with feedback. Trans. Amer. Math. Soc. 265, 375–392.MathSciNetMATHCrossRefGoogle Scholar
  69. [69]
    Stoilow, S. (1924) Sur les transformations continues d’une variable. C.R. Acad. Sci. Paris 179, 807–810.MATHGoogle Scholar
  70. [70]
    Stoilow, S. (1924) Sur l’ensemble où une fonction continue a une valeur constante. C.R. Acad. Sci. Paris 179, 1585–1586.Google Scholar
  71. [71]
    Stoilow, S. (1925) Sur l’inversion des fonctions continues. Bull. Soc. Math. France 53, 135–148.MathSciNetGoogle Scholar
  72. [72]
    Vajda, S. (1972) Probabilistic Programming. Academic Press, New York.Google Scholar
  73. [73]
    Ver Eecke, P. (1983) Fondements du calcul différentiel. Presses Universitaires de France, Paris.MATHGoogle Scholar

Copyright information

© Applied Probability Trust 1986

Authors and Affiliations

  • Marius Iosifescu

There are no affiliations available

Personalised recommendations