Skip to main content

Mathematical Models for Infectious Disease Statistics

  • Conference paper
A Celebration of Statistics

Abstract

Numerous mathematical models have been developed to gain better insight into the transmission and control of infectious diseases. Yet there are many unsolved problems, partly because the models are still too simple, partly because detailed epidemiologic records are notoriously lacking. The present survey concentrates on virus infections in humans. It is shown that available data do not allow a discrimination between various plausible models for the spread of common cold in households. Similar problems of model identification arise in the analysis of age-specific sero-prevalence-data of antibodies with so-called catalytic models. From such data alone one cannot derive contact rates between different age groups, although knowledge of these rates is needed in order to evaluate the effects of mass immunization and to describe the fluctuating infection incidence patterns. A new deterministic model is presented which takes into account increased infection transmission inside schools. This provides an explanation for one- and two-year periods of recurrent measles epidemics. The paper provides an outlook to future developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Aalen, O. O. (1978). “Nonparametric inference for a family of counting processes.” Ann. Statist., 6, 701–726.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, R. M. (1982). “The population dynamics and control of hookworm and roundworm infections.” In R. M. Anderson (ed.), The Population Dynamics of Infectious Diseases: Theory and Applications. London: Chapman and Hall, 67–108.

    Google Scholar 

  • Anderson, R. M. and May, R. M. (1979). “Population biology of infectious diseases: I.” Nature, 280, 361–367.

    Article  Google Scholar 

  • Anderson, R. M. and May, R. M. (1982a). “Population dynamics of human helminth infections: Control by chemotherapy.” Nature, 297, 557–563.

    Article  Google Scholar 

  • Anderson, R. M. and May, R. M. (1982b). “Directly transmitted infectious diseases: Control by vaccination.” Science, 215, 1053–1060.

    Article  MathSciNet  Google Scholar 

  • Anderson, R. M. and May, R. M. (1982c). “The logic of vaccination.” New Scientist, 96, 410–415.

    Google Scholar 

  • Anderson, R. M. and May, R. M. (eds.) (1982d). Population Biology of Infectious Diseases. Berlin: Springer.

    Google Scholar 

  • Anderson, R. M. and May, R. M. (1983). “Vaccination against rubella and measles: Quantitative investigations of different policies.” J. Hyg. Camb., 90, 259–325.

    Article  Google Scholar 

  • Aron, J. L. and May, R. M. (1982). “The population dynamics of malaria.” In R. M. Anderson (ed.), Population Dynamics of Infectious Diseases, London: Chapman and Hall, 139–179.

    Google Scholar 

  • Bailey, N. T. J. (1967). “The simulation of stochastic epidemics in two dimensions.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 4, 237–257.

    Google Scholar 

  • Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and its Applications, 2nd edn. London: Griffin.

    MATH  Google Scholar 

  • Bailey, N. T. J. (1980). “Spatial models in the epidemiology of infectious diseases.” Lecture Notes in Biomath., 38, 233–261.

    Google Scholar 

  • Bailey, N. T. J. (1982). The Biomat hematics of Malaria. London: Griffin.

    Google Scholar 

  • Bang, F. B. (1975). “Epidemiological interference.” Internat. J. Epidemiol., 4, 337–342.

    Article  Google Scholar 

  • Baroyan, O. V., Rvachev, L. A., and Ivannikov, Yu. G. (1977). Modeling and Prediction of Influenza Epidemics in the USSR. Moscow: N. F. Gamaleia Inst, of Epidemiology and Microbiology. (In Russian.)

    Google Scholar 

  • Bart, K. J., Orenstein, W. A., Hinman, A. R., and Amler, R. W. (1983). “Measles and models.” Internat. J. Epidemiol., 12, 263–266.

    Article  Google Scholar 

  • Bartlett, M. S. (1956). “Deterministic and stochastic models for recurrent epidemics.” In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 4, 81–109.

    Google Scholar 

  • Bartlett, M. S. (1957). “Measles periodicity and community size.” J. Roy. Statist. Soc. Ser. A, 120, 48–70.

    Article  Google Scholar 

  • Bartlett, M. S. (1960). “The critical community size for measles in the United States.” J. Roy. Statist. Soc. Ser. A, 123, 37–44.

    Article  Google Scholar 

  • Becker, N. (1977). “Estimation for discrete time branching processes with applications to epidemics.” Biometrics, 33, 515–522.

    Article  MATH  MathSciNet  Google Scholar 

  • Becker, N. (1979). “The uses of epidemic models.” Biometrics, 35, 295–305.

    Article  Google Scholar 

  • Becker, N. (1980). “An epidemic chain model.” Biometrics, 36, 249–254.

    Article  MATH  MathSciNet  Google Scholar 

  • Becker, N. (1981a). “A general chain binomial model for infectious diseases.” Biometrics, 37, 251–258.

    Article  MATH  MathSciNet  Google Scholar 

  • Becker, N. (1981b). “The infectiousness of a disease within households.” Biometrika, 68, 133–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Becker, N. and Angulo, J. (1981). “On estimating the contagiousness of disease transmitted from person to person.” Math. Biosci., 54, 137–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Becker, N. G. and Hopper, J. L. (1983a). “Assessing the heterogeneity of disease spread through a community.” Amer. J. Epidemiol., 117, 362–374.

    Google Scholar 

  • Becker, N. G. and Hopper, J. L. (1983b). “The infectiousness of a disease in a community of households.” Biometrika, 70, 29–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Bell, G. I., Perelson, A. S., and Pimbley, G. H. Jr. (eds.) (1978). Theoretical Immunology. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Berger, J. (1973). “Zur Infektionskinetik bei Toxoplasmose, Röteln, Mumps und Zytomegalie.” Zbl. Bakt. Hyg., I. Abt. Orig., A, 224, 503–522.

    Google Scholar 

  • Bernoulli, D. (1760). “Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de Finoculation pour la prévenir.” Mém. Math. Phys. Acad. Roy. Sei. Paris, 1–45.

    Google Scholar 

  • Black, F. L. (1966). “Measles endemicity in insular populations: Critical community size and its evolutionary implication.” J. Theoret. Biol., 11, 207–211.

    Article  Google Scholar 

  • Black, F. L., Hierholzer, W. J., De Pinheiro, F., et al. (1974). “Evidence for persistence of infectious agents in isolated human populations.” Amer. J. Epidemiol., 100, 230–250.

    Google Scholar 

  • Bliss, C. I. and Blevins, D. L. (1959). “The analysis of seasonal variation in measles.” Amer. J. Hyg., 70, 328–334.

    Google Scholar 

  • Bogel, K., Moegle, H., Knorpp, F., Arata, A., Dietz, K., and Diethelm, P. (1976). “Characteristics of the spread of a wildlife rabies epidemic in Europe.” Bull. World Health Org., 54, 433–447.

    Google Scholar 

  • Bradley, D. J. (1982). “Epidemiological models-theory and reality.” In R. M. Anderson (ed.), The Population Dynamics of Infectious Diseases: Theory and Applications. London: Chapman and Hall, 320–333.

    Google Scholar 

  • Brenner, H. (1985). Simulationsstudien zu zyklisch wiederkehrenden Infektionskrankheiten in räumlich heterogenen großen Populationen am Beispiel der Masern. Dissertation. Eberhard-Karls-Universität, Tübingen.

    Google Scholar 

  • Brimblecombe, F. S. W., Cruickshank, R., Masters, P. L., Reid, D. D., and Stewart, G. T. (1958). “Family studies of respiratory infections.” Brit. Med. J., 1, 119–128.

    Article  Google Scholar 

  • Brownlee, J. (1918). “An investigation into the periodicity of measles epidemics in London from 1703 to the present day by the method of the periodogram.” Philos. Trans. Roy. Soc. Lond. Ser. B, 208, 225–250.

    Article  Google Scholar 

  • Buck, A. A., Anderson, R. I., Macrae, A. A., and Fain, A. (1978a). “Epidemiology of poly-parasitism: I. Occurrence, frequency and distribution of multiple infections in rural communities in Chad, Peru, Afghanistan, and Zaire.” Tropenmed. Parasit., 29, 61–70.

    Google Scholar 

  • Buck, A. A., Anderson, R. I., Macrae, A. A., and Fain, A. (1978b). “Epidemiology of poly-parasitism: II. Types of combinations, relative frequency and associations of multiple infections.” Tropenmed. Parasit., 29, 137–144.

    Google Scholar 

  • CDC (1981). “Measles among children with religious exemptions to vaccination— Massachusetts, Ohio.” Morb. Mortal. Weekly Report., 30, 550–556.

    Google Scholar 

  • Cliff, A. D., Haggett, P., Ord, J. K., Bassett, K., and Davies, R. B. (1975). Elements of Spatial Structure: A Quantitative Approach. Cambridge: Cambridge U.P.

    Google Scholar 

  • Cliff, A. D., Haggett, P., Ord, J. K., and Versey, G. R. (1981). Spatial Diffusion: An Historical Geography of Epidemics in an Island Community. Cambridge: Cambridge U.P.

    Google Scholar 

  • Cohen, J. E. and Singer, B. (1979). “Malaria in Nigeria: Constrained continuous-time Markov models for discrete-time longitudinal data on human mixed-species infections.” In S. A. Levin (ed.), Lectures on Mathematics in the Life Sciences, 12, Some Mathematical Questions in Biology. Providence: Amer. Math. Soc., 69–133.

    Google Scholar 

  • Collins, S. D. (1929). “Age incidence of the common communicable diseases of children.” Publ. Health Reps., 44, 763–826.

    Article  Google Scholar 

  • Collins, S. D., Wheeler, R. E., and Shannon, R. D. (1942). The Occurrence of Whooping Cough, Chicken Pox, Mumps, Measles and German Measles in 200 000 Surveyed Families in 28 Large Cities. Special Study Series 1. Washington U.S. Public Health Service, Division of Public Health Methods.

    Google Scholar 

  • Cronin, J. (1977). “Some mathematics of biological oscillations.” SIAM Rev., 19, 100–138.

    Article  MATH  MathSciNet  Google Scholar 

  • Cunningham, J. (1979). “A deterministic model for measles.” Z. Naturforsch., 34c, 647–648.

    Google Scholar 

  • Cvjetanović, B., Grab, B., and Dixon, H. (1982). “Epidemiological models of poliomyelitis and measles and their application in the planning of immunization programmes.” Bull. World Health Org., 60, 405–422.

    Google Scholar 

  • Cvjetanović, B., Grab, B., and Uemura, K. (1978). “Dynamics of acute bacterial diseases, epidemiological models and their applications in public health.” Bull. World Health Org., Suppl. No. 1, 56, 1–143.

    Google Scholar 

  • Dietz, K. (1970). “Mathematical models for malaria in different ecological zones.” Paper presented at Seventh International Biometrie Conference, Hannover, August 16–21, 1970.

    Google Scholar 

  • Dietz, K. (1975a). “Transmission and control of arbovirus diseases.” In D. Ludwig and K. L. Cooke (eds)., Epidemiology. Philadelphia: SIAM, 104–121.

    Google Scholar 

  • Dietz, K. (1975b). “Models for parasitic disease control.” Bull. Internat. Statist. Inst., 46, Book 1, 531–544.

    MathSciNet  Google Scholar 

  • Dietz, K. (1976). “The incidence of infectious diseases under the influence of seasonal fluctuations.” Lecture Notes in Biomath., 11, 1–15.

    Google Scholar 

  • Dietz, K. (1979). “Epidemiologic interference of virus populations.” J. Math. Biol., 8, 291–300.

    Article  MATH  MathSciNet  Google Scholar 

  • Dietz, K. (1982). “The population dynamics of onchocerciasis.” In R. M. Anderson (ed.), The Population Dynamics of Infectious Diseases: Theory and Applications. London: Chapman and Hall, 209–241.

    Google Scholar 

  • Dietz, K., Molineaux, L., and Thomas (1974). “A malaria model tested in the African Savannah.” Bull. World Health Org., 50, 347–357.

    Google Scholar 

  • Dietz, K. and Renner, H. (1985). “Simulation of selective chemotherapy for the control of helminth diseases.” In J. Eisenfeld and C. Disi (eds)., Mathematics and Computers in Biomedical Applications. New York: Elsevier, 287–293.

    Google Scholar 

  • Egan, D. J. and Robinson, D. O. (1979). “Models of a heroin epidemic.” Amer. J. Psychiatry, 136, 1162–1167.

    Google Scholar 

  • Elveback, L. R., Fox, J. P., and Ackerman, E. (1975). “Simulation models.” Proc. Internat. Statist. Inst., 46, Book 1, 553–568.

    Google Scholar 

  • Elveback, L. R., Fox, J. P., and Ackerman, E. (1976a). “Stochastic simulation models for two immunization problems.” SIAM Rev., 18, 52–61.

    Article  Google Scholar 

  • Elveback, L. R., Fox, J. P., Ackerman, E., Langworthy, A., Boyd, M., and Gatewood, L. (1976b). “An influenza simulation model for immunization studies.” Amer. J. Epidemiol., 103, 152–165.

    Google Scholar 

  • Enderle, J. D. (1980). A Stochastic Communicable Disease Model with Age-Specific States and Applications to Measles. Ph.D. Dissertation. Rensselaer Polytechnic Inst., Troy, NY.

    Google Scholar 

  • En’ko, P.D. (1889). “The epidemic course of some infectious diseases,” Vrac’, 10, 1008–1010, 1039–1042, 1061–1063. (In Russian.)

    Google Scholar 

  • Fine, P. E. M. (1975a). “Ross’sa priori pathometry—a perspective.” Proc. Roy. Soc. Med., 68, 547–551.

    Google Scholar 

  • Fine, P. E. M. (1975b). “Superinfection: A problem in formulating a problem.” Trop. Dis. Bull., 72, 475–488.

    Google Scholar 

  • Fine, P. E. M. (1977). “A commentary on the mechanical analogue to the Reed-Frost epidemic model.” Amer. J. Epidemiol., 106, 87–100.

    Google Scholar 

  • Fine, P. E. M. (1979). “John Brownlee and the measurement of infectiousness: An historical study in epidemic theory.” J. Roy. Statist. Soc. Ser. A, 142, 347–362.

    Article  MathSciNet  Google Scholar 

  • Fine, P. E. M. (1982). “Applications of mathematical models to the epidemiology of influenza: A critique.” In P. Selby (ed.), Influenza Models: Prospects for Development and Use. Lancaster: MTP Press. 15–85.

    Google Scholar 

  • Fine, P. E. M. and Clarkson, J. A. (1982a). “Measles in England and Wales—I: An analysis of factors underlying seasonal patterns.” Internat. J. Epidemiol., 11, 5–14.

    Article  Google Scholar 

  • Fine, P. E. M. and Clarkson, J. A. (1982b). “Measles in England and Wales—II: Impact of the measles vaccination programme on the distribution of immunity in the population.” Internat. J. Epidemiol., 11, 15–25.

    Article  Google Scholar 

  • Fine, P. E. M. and Clarkson, J. A. (1982c). “The recurrence of whooping cough: Possible implications for assessment of vaccine efficacy.” Lancet, I, 666–669.

    Article  Google Scholar 

  • Frosner, G., Willers, H., Muller, M., Schenzle, D., Deinhardt, F., and Hopken, W. (1978). “Decrease of incidence of hepatitis A infection in Germany.” Infection, 6, 259–260.

    Article  Google Scholar 

  • Frost, W. H. (1976). “Some conceptions of epidemics in general.” Amer. J. Epidemiol., 103, 141–151.

    Google Scholar 

  • Goddard, M. J. (1978). “On Macdonald’s model for schistosomiasis.” Trans. Roy. Soc. Trop. Med. Hyg., 12, 123–131. [Correction. 13, 245.]

    Article  Google Scholar 

  • Goffman, W. and Newill, V. A. (1964). “Generalization of epidemic theory. An application to the transmission of ideas.” Nature, 204, 225–228.

    Article  Google Scholar 

  • Greenwood, M. (1931). “On the statistical measure of infectiousness.” J. Hyg. Camb. 31, 336–351.

    Article  Google Scholar 

  • Griffiths, D. A. (1973a). “Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease.” Biometrics, 29, 637–648.

    Article  Google Scholar 

  • Griffiths, D. A. (1973b). “The effect of measles vaccination on the incidence of measles in the community.” Roy. Statist. Soc. Ser. A, 136, 441–449.

    Article  Google Scholar 

  • Griffiths, D. A. (1974). “A catalytic model of infection for measles.” Appl. Statist., 3, 330–339.

    Article  Google Scholar 

  • Grossman, Z. (1980). “Oscillatory phenomena in a model of infectious diseases.” Theoret. Population Biol., 18, 204–243.

    Article  MATH  MathSciNet  Google Scholar 

  • Grossman, Z., Gumowski, I., and Dietz, K. (1977). “The incidence of infectious diseases under the influence of seasonal fluctuations—analytical approach.” In V. Lakshmikantham (ed.), Nonlinear Systems and Applications. New York: Academic, 525–546.

    Google Scholar 

  • Gumowski, I., Mira, C., and Thibault, R. (1980). “The incidence of infectious diseases under the influence of seasonal fluctuations—period models.” Lecture Notes in Medical Informatics, 9, 140–156.

    Google Scholar 

  • Gust, I. D., Lehmann, N. I., and Dimitrakakis, M. (1979). “A seroepidemiologic study of infection with HAV and HBV in five Pacific islands.” Amer. J. Epidemiol., 110, 237–242.

    Google Scholar 

  • Hadeler, K. P. and Dietz, K. (1983). “Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations.” Comput. Math. Appls., 9, 415–430.

    Article  MATH  MathSciNet  Google Scholar 

  • Haggett, P. (1972). “Contagious processes in a planar graph: An epidemiological application.” In N. D. Mlashan (ed.), Medical Geography. London: Methuen, 307–324.

    Google Scholar 

  • Haggett, P. (1976). “Hybridizing alternative models of an epidemic diffusion process.” Economic Geography, 52, 136–146.

    Article  Google Scholar 

  • Haggett, P. (1982). “Building geographic components into epidemiological models.” In P. Selby (ed.), Influenza Models: Prospects for Development and Use. Lancaster: MTP Press. 203–212.

    Google Scholar 

  • Hamer, W. H. (1906). “Epidemic disease in England.” Lancet, 1, 733–739.

    Google Scholar 

  • Hanusse, M. P. (1972). “De l’existence d’un cycle limite dans l’évolution des systèmes chimiques ouverts.” C. R. Acad. Sci. Paris C, 274, 1245–1247.

    Google Scholar 

  • Heasman, M. A. and Reid, D. D. (1961). “Theory and observation in family epidemics of the common cold.” Brit. J. Prev. Soc. Med., 15, 12–16.

    Google Scholar 

  • Hethcote, H. W. (1974). “Asymptotic behavior and stability in epidemic models.” Lecture Notes in Biomath., 2, 83–92.

    MathSciNet  Google Scholar 

  • Hethcote, H. W. (1983). “Measles and rubella in the United States.” Amer. J. Epidemiol., 117, 2–13.

    Google Scholar 

  • Hirsch, A. (1883). Handbook of Geographical and Historical Pathology, I. London: New Sydenham Soc.

    Google Scholar 

  • Hoppensteadt, F. C. and Murray, J. D. (1981). “Threshold analysis of a drug use epidemic model.” Math. Bio., 53, 79–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Horwitz, O., Grûnfeld, K., Lysgaard-Hansen, B., and Kjeldsen, K. (1974). “The epidemiology and natural history of measles in Denmark.” Amer. J. Epidemiol., 100, 136–149.

    Google Scholar 

  • Hu, M., Schenzle, D., Deinhardt, F., and Scheid, R. (1984). “Epidemiology of hepatitis A and B in the Shanghai area: Prevalence of serum markers.” Amer. J. Epidemiol, 120, 404–413.

    Google Scholar 

  • Jordan, C. (1960). Calculus of Finite Differences, 2nd edn. New York: Chelsea.

    Google Scholar 

  • Kermack, W. O. and Mendrick, A. G. (1927). “A contribution to the mathematical theory of epidemics.” Proc. Roy. Soc. Ser. A, 115, 700–721.

    Article  MATH  Google Scholar 

  • Kemper, J. T. (1980). “Error sources in the evaluation of secondary attack rates.” Amer. J. Epidemiol., 112, 457–464.

    Google Scholar 

  • Knolle, H. (1983). “The general age-dependent endemic with age-specific contact rate.” Biom. J., 25, 469–475.

    MATH  Google Scholar 

  • Koopman, J. S. (1979). “Models of transmission of infectious agents.” Inf. Diseases, 139, 616–617.

    Article  Google Scholar 

  • Kostitzin, V. A. (1934). Symbiose, Parasitisme et Évolution (Étude mathématique). Paris: Hermann.

    MATH  Google Scholar 

  • Kranz, J. (ed.) (1974). Epidemics of Plant Diseases. Mathematical Analysis and Modelling. Berlin: Springer.

    Google Scholar 

  • Lambinet, D., Boisvieux, J.-F., Mallet, A., Artois, M., and Andral, L. (1978). “Modèle mathématique de la propagation d’une épizootie de rage vulpine.” Rev. Epidém. et Santé Publ, 26, 9–28.

    Google Scholar 

  • Leeuwenburg, J., Ferguson, A. G., and Omondi-Odhiambo (1979). “Machakos project studies: XIII. Spatial contagion in measles epidemics.” Trop. Geogr. Med., 31, 311–320.

    Google Scholar 

  • London, W. P. and Yorke, J. A. (1973). “Recurrent outbreaks of measles, chicken-pox and mumps. I. Seasonal variation in contact rates.” Amer. J. Epidemiol., 98, 453–468.

    Google Scholar 

  • Longini, I. M., Jr., Ackerman, E., and Elveback, L. R. (1978). “An optimization model for influenza A epidemics.” Math. Biosci., 38, 141–157.

    Article  Google Scholar 

  • Longini, I. M., Jr. and Koopman, J. S. (1982). “Household and community transmission parameters from final distributions of infections in households.” Biometrics, 38, 115–126.

    Article  MATH  Google Scholar 

  • Longini, I. M., Jr., Koopman, J. S., Monto, A. S., and Fox, J. P. (1982). “Estimating household and community transmission parameters for influenza.” Amer. J. Epidemiol., 115, 736–751.

    Google Scholar 

  • Longini, I. M., Jr., Monto, A. S., and Koopman, J. S. (1984a). “Statistical procedures for estimating the community probability of illness in family studies: Rhinovirus and influenza.” Internat. J. Epidemiol., 13, 99–106.

    Article  Google Scholar 

  • Longini, I. M., Jr., Seaholm, S. K, Ackerman, E., Koopman, J. S., and Monto, A. S. (1984b). “Simulation studies of influenza epidemics: Assessment of parameter estimation and sensitivity.” Internat. J. Epidemiol., 13, 496–501.

    Article  Google Scholar 

  • Lotka, A. J. (1910). “Contribution to the theory of periodic reactions.” J. Phys. Chem., 14, 271.

    Article  Google Scholar 

  • Lotka, A. (1923a). “Contributions to the analysis of malaria epidemiology.” Amer. J. Hyg., 3, Suppl. 1, 1–121.

    Google Scholar 

  • Lotka, A. J. (1923b). “Martini’s equations for the epidemiology of immunising diseases.” Nature, 111, 633–634.

    Article  Google Scholar 

  • Macdonald, G. (1956). “Theory of the eradication of malaria.” Bull. World Health Org., 15, 369–387.

    Google Scholar 

  • Macdonald, G. (1957). The Epidemiology and Control of Malaria. London: Oxford U.P.

    Google Scholar 

  • Macdonald, G. (1965). “The dynamics of helminth infections with special reference to schistosomes.” Trans. Roy. Soc. Trop. Med. Hyg., 59, 489–506.

    Article  Google Scholar 

  • Macdonald, G. (1973). Dynamics of Tropical Disease (Collected papers; L. J. Bruce-Chwatt and V. J. Glanville, eds.). London: Oxford U.P.

    Google Scholar 

  • Mendrick, A. G. (1926). “Applications of mathematics to medical problems.” Proc. Edinburgh Math. Soc., 44, 98–130.

    Article  Google Scholar 

  • Mackintosh, D. R. and Stewart, G. T. (1979). “A mathematical model of a heroin epidemic: Implications for control policies.” J. Epidemiol. Comm. Health, 33, 299–304.

    Article  Google Scholar 

  • Martini, E. (1921). Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria. Hamburg: W. Gente.

    Google Scholar 

  • Millar, J. R. (1970). “Theoretical and practical problems in measles control.” Center for Disease Control. Smallpox Eradication Program Reports, 4, 165–176.

    Google Scholar 

  • Molineaux, L. and Gramiccia, G. (1979). The Garki Project: Research on the Epidemiology of Human Malaria in the Sudan Savannah of West Africa. Geneva: World Health Organization.

    Google Scholar 

  • Morris, R. S. (1972). “The use of computer modelling in studying the epidemiology and control of animal disease.” In A. Madsen and P. Willeberg (eds.), Proceedings of the International Summer School on Computers and Research in Animal Nutrition and Veterinary Medicine. Copenhagen: Frederiksberg Bogtrykkeri, 435–463.

    Google Scholar 

  • Moshkovski, Sh. D. (1950). Basic Laws of Malaria Epidemiology. Moscow: Izdat. AMN SSSR. (In Russian.)

    Google Scholar 

  • Muench, H. (1934). “Derivation of rates from summation data by the catalytic curve.” J ASA, 29, 25–38.

    Google Scholar 

  • Muench, H. (1959). Catalytic Models in Epidemiology. Cambridge, MA: Harvard U.P.

    Google Scholar 

  • Murray, G. D. and Cliff, A. D. (1977). “A stochastic model for measles epidemics in a multi-region setting.” Trans. Inst. Brit. Geographers, N.S., 2, 158–174.

    Article  Google Scholar 

  • Nåsell, I. (1977). “On transmission and control of schistosomiasis, with comments on Macdonald’s model.” Theoret. Population Biol., 12, 335–365.

    Article  Google Scholar 

  • Nåsell, I. and Hirsch, W. M. (1973). “The transmission dynamics of schistosomiasis.” Comm. Pure Appl. Math., 26, 395–453.

    Article  MATH  MathSciNet  Google Scholar 

  • Neustadt, R. E. and Fineberg, H. V. (1978). The Swine Flu Affair: Decision-Making on a Slippery Disease. Washington: U.S. Dept. HEW.

    Google Scholar 

  • Nuti, M., Ferrari, M. J. D., Franco, E., Taliani, G., and De Bac, C. (1982). “Seroepidemiology of infection with hepatitis A virus and hepatitis B virus in the Seychelles.” Amer. J. Epidemiol., 116, 161–167.

    Google Scholar 

  • Pampana, E. J. (1969). A Textbook of Malaria Eradication, 2nd edn. London: Oxford U.P.

    Google Scholar 

  • Riley, E. C., Murphy, G., and Riley, R. L. (1978). “Airborne spread of measles in a suburban elementary school.” Amer. J. Epidemiol., 107, 421–432.

    Google Scholar 

  • Rosenfield, P. L., Smith, R. A., and Wolman, M. G. (1977). “Development and verification of a schistosomiasis transmission model.” Amer. J. Trop. Med. Hyg., 26, 505–516.

    Google Scholar 

  • Ross, R. and Hudson, H. P. (1917). “An application of the theory of probabilities to the study of a priori pathometry—part III.” Proc. Roy. Soc. Ser. A, 93, 225–240.

    Article  Google Scholar 

  • Rost, H. (1981). “On the method of hybrid model approximation.” In Proceedings of the 6th Conference on Probability Theory, Brasov 1979. Editura Acad. Rep. Soc. Romania, 185–194.

    Google Scholar 

  • Rvachev, L. A. (1967). “A model for the connection between processes in the organism and the structure of epidemics.” Kibernetika, 3, 75–78. (In Russian.)

    MathSciNet  Google Scholar 

  • Sartwell, P. E. (1976). “Memoir on the Reed-Frost epidemic theory.” Amer. J. Epidemiol., 103, 138–140.

    Google Scholar 

  • Schenzle, D. (1982). “Problems in drawing epidemiological inferences by fitting epidemic chain models to lumped data.” Biometrics, 38, 843–847.

    Article  Google Scholar 

  • Schenzle, D. (1985a). “Control of virus transmission in age-structured populations.” In Proceedings of an International Conference on Mathematics in Biology and Medicine, Bari, July 18–22, 1983. Lecture Notes in Biomathematics (in press).

    Google Scholar 

  • Schenzle, D. (1985b). “An age-structured model of pre- and post-vaccination measles transmission.” IMA J. Math. Appl. Med. Biol, (in press).

    Google Scholar 

  • Schenzle, D., Dietz, K., and Frösner, G. (1979). “Hepatitis A antibodies in European countries II. Mathematical analysis of cross-sectional surveys.” Amer. J. Epidemiol., 110, 70–76.

    Google Scholar 

  • Schütz, F. (1925). Die Epidemiologie der Masern. Jena: G. Fischer.

    Google Scholar 

  • Scott, H. D. (1971). “The elusiveness of measles eradication: Insights gained from three years of intensive surveillance in Rhode Island.” Amer. J. Epidemiol., 94, 37–42.

    Google Scholar 

  • Skinhoj, P., Mathiesen, L. R., and Cohn, J. (1980). Persistence of viral hepatitis A and B in an isolated Caucasian population. Amer. J. Epidemiol., 112, 144–148.

    Google Scholar 

  • Smith, H. L. (1983a). “Subharmonic bifurcation in an S-I-R epidemic model.” J. Math. Biol., 17, 163–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, H. L. (1983b). “Multiple stable subharmonics for a periodic epidemic model.” J. Math. Biol., 17, 179–190.

    Article  MATH  MathSciNet  Google Scholar 

  • Snyder, M. J., Mrumb, F. R., Bigbee, T., Schluederberg, A. E., and Togo, Y. (1962). “Observations on the seroepidemiology of measles.” Amer. J. Dis. Child., 103, 250–251.

    Google Scholar 

  • Soper, H. E. (1929). “Interpretation of periodicity in disease prevalence.” J. Roy. Statist. Soc., 92, 34–73.

    Article  Google Scholar 

  • Stille, W. T. and Gersten, J. C. (1978). “Tautology in epidemic models.” J. Inf. Diseases, 138, 99–101.

    Article  Google Scholar 

  • Stirzaker, D. R. (1975). “A perturbation method for the stochastic recurrent epidemic.” J. Inst. Math. Appl., 15, 135–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Sugiyama, H. (1960). “Some statistical contributions to the health sciences.” Osaka City Medical J., 6, 141–158.

    Google Scholar 

  • Sundaresan, T. K. and Assaad, F. A. (1973). “The use of simple epidemiological models in the evaluation of disease control programmes: A case study of trachoma.” Bull. World Health Org., 48, 709–714.

    Google Scholar 

  • Thieme, H. R. (1980). “Some mathematical considerations of how to stop the spatial spread of a rabies epidemic.” Lecture Notes in Biomath., 38, 310–319.

    MathSciNet  Google Scholar 

  • Tyson, J. J. and Light, J. C. (1973). “Properties of two-component bimolecular and trimolecular chemical reaction systems.” J. Chem. Phys., 59, 4164–4172.

    Article  Google Scholar 

  • Von Foerster, H. (1959). Some remarks on changing populations.” In F. Stohlman, Jr. (ed.), The Kinetics of Cellular Proliferation. New York: Grune and Stratton, 382–407.

    Google Scholar 

  • Waggoner, P. E. (1981). “Models of plant disease.” Bioscience, 31, 315–319.

    Article  Google Scholar 

  • Warren, K. S. (1973). “Regulation of the prevalence and intensity of schistosomiasis in man: Immunology or ecology?” J. Inf. Diseases, 127, 595–609.

    Article  Google Scholar 

  • Wickwire, K. (1977). “Mathematical models for the control of pests and infectious diseases; a survey.” Theoret. Population Biol., 11, 182–238.

    Article  MathSciNet  Google Scholar 

  • Wilson, E. B. and Worcester, J. (1941). “Contact with measles.” Proc. Nat. Acad. Sci. U.S.A., 27, 7–13.

    Article  Google Scholar 

  • Wilson, E. B. and Worcester, J. (1945). “Damping of epidemic waves.” Proc. Nat. Acad. Sci. U.S.A., 31, 294–298.

    Article  MATH  MathSciNet  Google Scholar 

  • Wong, D. C., Purcell, R. H. and Rosen, L. (1979). “Prevalence of antibody to hepatitis A and hepatitis B viruses in selected populations of the South Pacific.” Amer. J. Epidemiol., 110, 227–236.

    Google Scholar 

  • Yorke, J. A. and London, W, P. (1973). “Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects.” Amer. J. Epidemiol., 98, 469–482.

    Google Scholar 

  • Yorke, J. A., Nathanson, N., Pianigiani, G. and Martin, J. (1979). “Seasonality and the requirements for perpetuation and eradication of viruses in populations.” Amer. J. Epidemiol., 109, 103–123.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Dietz, K., Schenzle, D. (1985). Mathematical Models for Infectious Disease Statistics. In: Atkinson, A.C., Fienberg, S.E. (eds) A Celebration of Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8560-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8560-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8562-2

  • Online ISBN: 978-1-4613-8560-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics