Skip to main content

Agricultural Experimentation in a Developing Country

  • Conference paper
  • 749 Accesses

Abstract

Agricultural experimentation in a developing country encounters a number of problems not found elsewhere. For example, skilled scientists may be few and mostly they have been trained elsewhere, which means that they are not always well equipped to deal with the special problems of their own country. There is pressure to conduct very simple experiments. Even greater difficulties arise from the specification of objectives, especially as many of the farming systems that need to be improved have a cultural or religious basis that needs to be respected.

Four topics are discussed that have special relevance to the conditions of a developing country: (1) local control of environmental variation, (2) intercropping, (3) studies of reliability, and (4) systematic designs. A further section examines the transfer of technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Atkinson, A. C. (1969). “The use of residuals as a concomitant variable.” Biometrika, 56, 33–41.

    Article  MathSciNet  Google Scholar 

  • Bartlett, M. S. (1938). “The approximate recovery of information from field experiments with large blocks.” J. Agric. Sci. (Cambridge), 28, 418–427.

    Article  Google Scholar 

  • Bartlett, M.S. (1978). “Nearest neighbour models in the analysis of field experiments” (with discussion). J. Roy. Statist. Soc. Ser. B, 40, 147–174.

    MATH  MathSciNet  Google Scholar 

  • Bleasdale, J. K. A. (1967a). “The relationship between the weight of a plant part and total weight as affected by plant density.” J. Hort. Sci., 42, 51–58.

    Google Scholar 

  • Bleasdale, J. K. A. (1967b). “Systematic designs for spacing experiments.” Expl. Agric., 3, 73–86.

    Article  Google Scholar 

  • Bleasdale, J. K. A. and Nelder, J. A. (1960). “Plant population and crop yield.” Nature (London), 188, 342.

    Article  Google Scholar 

  • Bocquet, M. (1953). “Note sur l’expérience de densité Marchai appliqué a l’hévéa culture.” Arch. Rubbercult., May 1953 Extra No., 194–199

    Google Scholar 

  • Chetty, C. K. R. and Reddy, M. N. (1984). “Analysis of intercrop experiments in dryland agriculture.” Expl. Agric., 20, 31–40.

    Article  Google Scholar 

  • Dyke, G. V. and Shelley, C. F. (1976). “Serial designs balanced for effects of neighbours on both sides.” Agric. Sci. (Cambridge), 87, 303–305.

    Article  Google Scholar 

  • Dyson, W. G. and Freeman, G. H. (1968). “Seed orchard designs for sites with a constant prevailing wind.” Silvae Genet., 17, 12–15.

    Google Scholar 

  • Farazdagh, H. and Harris, P. M. (1968). “Plant competition and crop yield.” Nature (London), 217, 289–290.

    Article  Google Scholar 

  • Federer, W. T. (1979). “Statistical designs and response models for mixtures of cultivars.” Agron. J., 71, 701–706.

    Article  Google Scholar 

  • Federer, W. T., Hedayat, A., Lowe, C. C., and Raghavarao, D. (1976). “Application of statistical design theory to crop estimation with special reference to legumes and mixtures of cultivars.” Agron. J., 68, 914–919.

    Article  Google Scholar 

  • Freeman, G. H. (1967). “The use of cyclic balanced incomplete block designs for directional seed orchards.” Biometrics, 23, 761–778.

    Article  Google Scholar 

  • Freeman, G. H. (1969). “The use of cyclic balanced incomplete block designs for non-directional seed orchards.” Biometrics, 25, 561–567.

    Article  Google Scholar 

  • Freeman, G. H. (1979a). “Some two-dimensional designs balanced for nearest neighbours.” J. Roy. Statist. Soc. Ser. B, 41, 88–95.

    MATH  MathSciNet  Google Scholar 

  • Freeman, G. H. (1979b). “Complete Latin squares and related experimental designs.” J. Roy. Statist. Soc. Ser. B, 41, 253–262.

    MathSciNet  Google Scholar 

  • Freeman, G. H. (1981). “Further results on quasi-complete Latin squares.” J. Roy. Statist. Soc. Ser. B, 43, 314–320.

    MathSciNet  Google Scholar 

  • Freyman, S. and Dolman, D. (1971). “A simple systematic design of planting density experiments with set row widths.” Canad. J. Plant. Sci., 51, 340–342.

    Article  Google Scholar 

  • Gilliver, B. and Pearce, S. C. (1983). “A graphical assessment of data from intercropping factorial experiments.” Expl. Agric., 19, 23–31.

    Article  Google Scholar 

  • Gomez, K. A. (1983). “Measuring potential productivity on small farms: A challenge.” Invited paper presented at the 44th Session of the I.S.I., Madrid. Proceedings, 1, 571–585.

    Google Scholar 

  • Holliday, R. (1960). “Plant production and crop yield.” Nature (London), 186, 22–24.

    Article  Google Scholar 

  • Kempton, R. A. and Howes, C. W. (1981). “The use of neighbouring plot values in the analysis of variety trials.” Appl. Statist., 30, 59–70.

    Article  Google Scholar 

  • Lockwood, G. (1980). “Adjustment by neighbouring plots in progeny trials with cocoa.” Expl. Agric., 16, 81–89.

    Article  Google Scholar 

  • Martin, F. B. (1973). “Beehive designs for observing variety competition.” Biometrics, 29, 397–402.

    Article  Google Scholar 

  • Martin, R. J. (1984). “Papadakis’ Method.” (to appear). InEncyclopaedia of Statistical Sciences, New York: Wiley.

    Google Scholar 

  • Mead, R. and Riley, J. (1981). “A review of statistical ideas relevant to intercropping” (with discussion). J. Roy. Statist. Soc. Ser. A, 144, 462–509.

    Article  Google Scholar 

  • Mead, R. and Stern, R. D. (1980). “Designing experiments for intercropping research.” Expl Agric., 16, 329–342.

    Article  Google Scholar 

  • Mead, R. and Willey, R. W. (1980). “The concept of a ’land equivalent ratio’ and advantages in yields from intercropping.” Expl Agric., 16, 217–228.

    Article  Google Scholar 

  • Nelder, J. A. (1962). “New kinds of systematic designs for spacing experiments.” Biometrics, 18, 283–307.

    Article  MATH  Google Scholar 

  • Oyejola, B. A. and Mead, R. (1982). “Statistical assessment of different ways of calculating land equivalent ratios (LER).” Expl. Agric., 18, 125–138.

    Article  Google Scholar 

  • Papadakis, J. (1937). “Méthode statistique pour des expériences sur champ.” Inst. Amél. Plantes, Salonique (Grèce), Bull, 23.

    Google Scholar 

  • Papadakis, J. (1940). “Comparison de différentes méthodes d’expérimentation phyto-technique.” Rev. Argentina. Agron., 7, 297–362.

    Google Scholar 

  • Pearce, S. C. (1953). Field Experimentation with Fruit Trees and Other Perennial Plants. Commonwealth Agric. Bur., Farnham Royal, Tech. Commun., 23, Section 48.

    Google Scholar 

  • Pearce, S. C. (1976). Pearce (1953), 2nd edn., Section 66.

    Google Scholar 

  • Pearce, S. C. (1978). “The control of environmental variation in some West Indian maize experiments.” Trop. Agric. (Trinidad), 55, 97–106.

    Google Scholar 

  • Pearce, S. C. (1980). “Randomized blocks and some alternatives: A study in tropical conditions.” Trop. Agric. (Trinidad), 57, 1–10.

    Google Scholar 

  • Pearce, S. C. (1983a). The Agricultural Field Experiment: A Statistical Examination of Theory and Practice. Chichester: Wiley, Section 9.8.

    Google Scholar 

  • Pearce, S. C. (1983b). “The control of local variation in a field experiment.” Invited paper presented at the 44th Session of the I.S.I., Madrid. Proceedings, I, 586–593.

    MathSciNet  Google Scholar 

  • Pearce, S. C. and Edmondson, R. N. (1983). “Historical data as a guide to selecting farming systems with two species.” Expl. Agric., 18, 353–362.

    Article  Google Scholar 

  • Pearce, S. C. and Edmondson, R. N. (1984). “Experimenting with intercrops.” Biometrics, 40, 231–238.

    Article  Google Scholar 

  • Pearce, S. C. and Gilliver, B. (1978). “The statistical analysis of data from intercropping experiments.” J. Agric. Sci. (Cambridge), 91, 625–632.

    Article  Google Scholar 

  • Pearce, S. C. and Gilliver, B. (1979). “Graphical assessment of intercropping methods.” J. Agric. Sci. (Cambridge), 93, 51–58.

    Article  Google Scholar 

  • Pearce, S. C. and Moore, C. S. (1976). “Reduction of error in perennial crops, using adjustment by neighbouring plots.” Expl. Agric., 12, 267–272.

    Article  Google Scholar 

  • Preece, D. A. (1982). “The design and analysis of experiments: What has gone wrong?” Utilitas Math., 21A, 201–244.

    MathSciNet  Google Scholar 

  • Rao, C. R. (1952) Advanced Statistical Methods in Biometric Research. New York: Wiley, 260.

    MATH  Google Scholar 

  • Reddy, M. N. and Chetty, C. K. R. (1984). “Staple land equivalent ratio for assessing yield advantage from intercropping.” Expl. Agric., 20, 171–177.

    Article  Google Scholar 

  • Riley, J. (1984) “A general form of’land equivalent ratio’.” Expl. Agric., 20, 19–29.

    Article  Google Scholar 

  • Rogers, I. S. (1972). “Practical considerations in the use of systematic spacing designs.” Austral. J. Expl. Agric. Anim, Husb., 12, 306–309.

    Article  Google Scholar 

  • Singh, M. and Gilliver, B. (1983). “Statistical analysis of intercropping data using a correlated error structure.” Paper contributed to 44th Session of the I.S.I., Madrid. Proceedings, 1, 158–163.

    Google Scholar 

  • Veevers, A. and Boffey, T. B. (1975). “On the existence of levelled beehive designs”. Biometrics, 31, 963–968.

    Article  MATH  Google Scholar 

  • Veevers, A. and Boffey, T. B. (1979). “Designs for balanced observation of plant competition.” J. Statist. Planning Infer., 3, 325–332.

    Article  MATH  Google Scholar 

  • Wilkinson, G. N., Eckert, S. R., Hancock, T. W., and Mayo, O. (1983). “Nearest neighbour (NN) analysis of field experiments” (with discussion). J. Roy. Statist. Soc. Ser. B, 45, 151–211.

    MATH  Google Scholar 

  • Willey, R. W. and Osiru, D. S. O. (1972). “Studies on mixtures of maize and beans (Phasaelus vulgaris) with particular reference to plant population.” J. Agric. Sci. (Cambridge), 28, 556–580.

    Google Scholar 

  • Williams, R. M. (1952). “Experimental designs for serially correlated observations.” Biometrika, 39, 151–167.

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Pearce, S.C. (1985). Agricultural Experimentation in a Developing Country. In: Atkinson, A.C., Fienberg, S.E. (eds) A Celebration of Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8560-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8560-8_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8562-2

  • Online ISBN: 978-1-4613-8560-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics