Skip to main content

Concepts of Robustness

  • Conference paper

Abstract

A robust statistical procedure can be thought of as one which performs well over a range of situations and is able to stand up to a certain amount of abuse without breaking down. The development of the principal ideas of robustness is traced from about 1800 to the present, illustrating that scientists and statisticians have been concerned with the sensitivity of statistical procedures over this whole time and that some of the proposed solutions are closely related to robust estimates in use today. A brief overview of current research in robustness is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anonymous (1821). “Dissertation sur la recherche du milieu le plus probable,” Ann. Math. Pures et Appl., 12, 181–204.

    Google Scholar 

  • Box, G. E. P. (1980). “Sampling and Bayes inference in scientific modelling and robustness,” J. Roy. Statist. Soc. Ser. A, 143, 383–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Chauvenet, W. (1863). A Manual of Spherical and Practical Astronomy, Vol. 2, Philadelphia: Lippincott.

    Google Scholar 

  • Cushny, A. R. and Peebles, A. R. (1905). “The action of optical isomers. II. Hyoscines.” J. Physiol., 32, 501–510.

    Google Scholar 

  • Daniell, P. J. (1920). “Observations weighted according to order.” Amer. J. Math., 42, 222–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Freeman, D., Pisani, R., and Purves, R. (1978). Statistics. New York: Norton.

    Google Scholar 

  • Graf, H. P. (1983). Long Range Correlations and Estimation of the Self Similarity Parameter. Published Ph.D. Thesis. Zurich: E.T.H.

    Google Scholar 

  • Hampel, F. R. (1973). “Robust estimation: a Condensed partial survey.” Z. Wahrsch. Verw. Gebiete, 27, 87–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., an Stahel, W. (1985). Robust Statistics: The Approach Based on the Influence Function. New York: Wiley (to be published).

    Google Scholar 

  • Hoaglin, D. C., Mosteller, F., and Tukey, J. W. (1983). Understanding Robust and Exploratory Data Analysis. New York: Wiley.

    MATH  Google Scholar 

  • Huber, P. J. (1972). “Robust statistics: A review.” Ann. Math. Statist., 43, 1041–1067.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1981). Robust Statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Jeffreys, H. (1932). “An alternative to the rejection of outliers.” Proc. Roy. Soc. Ser. A, 137, 78–87.

    Article  MATH  Google Scholar 

  • Kleiner, B., Martin, R. D., and Thompson, D. J. (1979). “Robust estimation of power spectra.” J. Roy. Statist. Soc. Ser. B, 41, 313–351.

    MathSciNet  MATH  Google Scholar 

  • Laplace, P. S. de (1979). Traité de Mécanique Céleste, Paris: Gauthier-Villars.

    Google Scholar 

  • Newcomb, S. (1886). “A generalized theory of the combination of observations so as to obtain the best result.” Amer. I. Math., 8, 343–366.

    Article  MathSciNet  Google Scholar 

  • Newcomb, S. (1912). “Researches on the motion of the moon, II.” In Astronomical Papers, 9. U.S. Nautical Almanac Office, 1–249.

    Google Scholar 

  • Pearson, E. S. (1931). “The analysis of variance in cases of non-normal variation.” Biometrika, 23, 114–133.

    Google Scholar 

  • Peirce, B. (1852). “Criterion for the rejection of doubtful observations.” Astronom. J., 2, 161–163.

    Article  Google Scholar 

  • Saaty, T. L. and Bram, J. (1964). Nonlinear Mathematics. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Smith, R. H. (1888). “True average of observations?” Nature, 37, 464. Reproduced in Biometrika (1980), 67, 219–220.

    Article  Google Scholar 

  • Stigler, S. M. (1973). “Simon Newcomb, Percy Daniell, and the history of robust estimation 1885–1920.” J. Amer. Statis. Assoc., 68, 872–879.

    Article  MathSciNet  MATH  Google Scholar 

  • Stigler, S. M. (1980). “Studies in the history of Probability and Statistics XXXVIII, R. H. Smith; a Victorian interested in robustness.” Biometrika, 67, 217–221.

    MathSciNet  MATH  Google Scholar 

  • “Student” (1927). “Errors of routine analysis.” Biometrika, 19, 151–164

    Article  Google Scholar 

  • Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Field, C. (1985). Concepts of Robustness. In: Atkinson, A.C., Fienberg, S.E. (eds) A Celebration of Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8560-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8560-8_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8562-2

  • Online ISBN: 978-1-4613-8560-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics