Skip to main content

A Non-Linear Model for Fluid Parcel Motions in the Presence of Many Large and Meso-Scale Vortices

  • Chapter
Stochastic Models in Geosystems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 85))

Abstract

The trajectories of satellite tracked drifters that are assumed to represent fluid parcels motions in large and meso-scale oceanic flows have been shown previously i) to be physical fractals, ii) to behave as self-affine random walks, iii) to possess the scaling exponent approximately equal to the inverse of their fractal dimension, iv) to obey a superdiffusion law and v) to exhibit mild multiscaling (multifractality). A quasi-linear Torino model of drifter motion has proved successful in reproducing the first four of these features but not the fifth. In this paper a non-linear extension of this model taking into account vortex trapping and hopping is developed to remedy the situation.

The work was carried out mainly when at the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, U. K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Aref J. Fluid Mech. 143, 1 (1984).

    Article  Google Scholar 

  2. J. Ottino Kinematics of Mixing: Stretching, Chaos and Transport(Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  3. A. R. Osborne and R. Caponio Phys. Rev. Lett. 64, 1733 (1990).

    Article  Google Scholar 

  4. M. G. Brown and K. B. Smith J. Phys. Ocean. 20, 139 (1991);

    Article  Google Scholar 

  5. M. G. Brown and K. B. Smith Phys. Fluids A 3(5) 1186 (1991).

    Article  Google Scholar 

  6. B. G. Sanderson, A. Goulding and A. Okubo Tellus 42A, 550 (1990);

    Google Scholar 

  7. B. G. Sanderson and D. A. Booth Tellus 43A, 334 (1991).

    Google Scholar 

  8. P. H. LeBlond Private communication (1990).

    Google Scholar 

  9. R. E. Davis J. Mater. Res. 41, 163 (1983).

    Google Scholar 

  10. W. Horton 1990 Phys. Rep 192(1), 1 (1990).

    Article  Google Scholar 

  11. M. Pettini et al.Phys. Rev. A 38(1), 344 (1989).

    Article  Google Scholar 

  12. G. I. Taylor, Proc. London Math. Soc., A20, 196 (1921)

    Google Scholar 

  13. J. H. Misguish, R. Balescu, H. L. Pécseli, T. Mikkelsen, S. F. Larsen, and Qiu Xiaoming, Plasma Physics and Controlled Fusion, 29(7), 825 (1987)

    Article  Google Scholar 

  14. J. A. Krommes in Handbook of Plasma Physics, Vol. 2, edited by M. N. Rosenbluth and R. Z. Sagdeev (North Holland Physics Publishing, Amsterdam, 1983).

    Google Scholar 

  15. L. Fradkin Plasma Phys. and Controll. Fusion 33(6), 685 (1991).

    Article  Google Scholar 

  16. D. F. Escande Phys. Rep. 121(3), 166 (1984).

    Google Scholar 

  17. A. N. Neishtadt, D. K. Chaikovskii, and A. A. Chernikov Soy. Phys. JETP 72(3), 423 (1991).

    Google Scholar 

  18. J.-P. Bouchard et al.Phys. Rev. Lett. 64, 2503 (1990).

    Article  Google Scholar 

  19. M. B. Isichenko Rev. Mod. Phys. 64(4), 961 (1992).

    Article  Google Scholar 

  20. A. R. Osborne, A. D. Kirwan, Jr., A. Provenzale, and L. Bergamasco Tellus 41B, 416 (1989).

    Google Scholar 

  21. A. Provenzale, A. R. Osborne, A. D. Kirwan, Jr., and L. Bergamasco in Proceeding of the Enrico Fermi School: Nonlinear Topics in Ocean Physicsedited by A. R. Osborne (North-Holland, Amsterdam, 1981).

    Google Scholar 

  22. A. R. Osborne, R. Caponio, and A. Pastorello Mod. Phys. Lett. A 6(2) 83 (1991).

    Article  Google Scholar 

  23. I. S. Gradshteyn, and I.M. Ryzhik 1980 Table of Integrals, Series and Products, 3.761(9) (Academic Press, New York, 1980).

    Google Scholar 

  24. B. B. Mandelbrot The Fractal Geometry of Nature(Freeman, San Francisco, 1982 ).

    Google Scholar 

  25. V. V. Afanasyev, R. Z. Sagdeev, and G. M. Zaslaysky Chaos 1(2), 143 (1991).

    Article  Google Scholar 

  26. M. F. Shlesinger Physica D 38, 304 (1989).

    Article  Google Scholar 

  27. G. Paladin, and A. Vulpiani Phys. Rep. 156(4), 147 (1987).

    Article  Google Scholar 

  28. H. Aref Phil. Trans. Soc. Lond. A 333, 273 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Fradkin, L.J., Osborne, A.R. (1997). A Non-Linear Model for Fluid Parcel Motions in the Presence of Many Large and Meso-Scale Vortices. In: Molchanov, S.A., Woyczynski, W.A. (eds) Stochastic Models in Geosystems. The IMA Volumes in Mathematics and its Applications, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8500-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8500-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8502-8

  • Online ISBN: 978-1-4613-8500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics