Skip to main content

Cascade of Scaling Gyroscopes: Lie Structure, Universal Multifractals and Self-Organized Criticality in Turbulence

  • Chapter
Stochastic Models in Geosystems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 85))

Abstract

Following V.I. Arnold and A.M. Obukhov, we consider the similarities between the Lie structure of the Navier-Stokes equations of hydrodynamic turbulence and the Euler equations of a gyroscope. We show that indeed a certain type of direct interaction yields a quite closer analogy than previously considered. Furthermore, the interactions built up dynamically on it yield a dynamical space-time cascade, the cascade of scaling gyroscopes, which should preserve most of the properties of the Navier-Stokes equations. We point out that it corresponds to a non-trivial tree-decomposition of the non-simple Lie structure of turbulence. We show how this cascade model can help to clarify fundamental questions of turbulence by investigating the possible multifractal universality and multifractal phase transitions to Self Organized Criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V.I., Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), v. 16, 1, pp. 319–361, 1966.

    Article  Google Scholar 

  • Bialas, A., Peschanski, R., Nucl. Phys. B, v. 273, p. 703, 1986.

    Article  Google Scholar 

  • Chigirinskaya, Y., Schertzer, D., Lovejoy, S., Lazarev, A., Ordanovich, A. Nonlinear Processes in Geophysics, v. 1, pp. 105–114, 1994.

    Article  Google Scholar 

  • Dubrulle, B., Intermittency in Fully Developed Turbulence: Log-Poisson Statistics and Generalized Scale Covariance. Phys.. Rev. Lett., v. 73, 7, p. 959–962, 1994.

    Article  Google Scholar 

  • Frisch, U., in Turbulence and Stochastic Processes, ed. By J.C.R. Hunt etal., The Royal Society, London, 1991.

    Google Scholar 

  • Gledzer, E.B., Izv. Acad. Nauk USSR, Ser. MFG, 1, 1980.

    Google Scholar 

  • Gledzer, E.B., Dolzhansky, E.V., Obukhov, A.M. Systems of fluid mechanical type and their application, Moscow, Nauka, p. 368 (in Russian), 1981.

    Google Scholar 

  • Grossmann, S., Lohse, D., Europhys. Lett., v. 21, 2, pp. 201–206, 1993.

    Article  Google Scholar 

  • Gupta, V., Waymire, E. C., J. Appl. Meteor., v. 32, p. 251, 1993.

    Article  Google Scholar 

  • Kolmogorov, A.N., Proc. Acad. Sci. USSR, Geochem. Sect. 30, pp. 299–303, 1941.

    Google Scholar 

  • Lavallee, D., Ph.D. thesis, McGill University, Montreal, Canada, 1991.

    Google Scholar 

  • Lavallee, D., Lovejoy, S., Schertzer, D., Ladoy, F., Fractals in Geography, Eds. De Cola, L., Lam, N., PTR, Prentice Hall, pp.158–192, 1993.

    Google Scholar 

  • Leslie, D.C., Developments in the theory of turbulence, Clarendon Press, Oxford, p. 368, 1973.

    Google Scholar 

  • Levich, E., Tzvetkov, E., Phys. Rep., v. 128, p. 1, 1985.

    Article  Google Scholar 

  • Mandelbrot, B., in Fractals in the Natural Sciencesed. by M. Fleischman et al., p. 3, Princeton University press, 1989.

    Google Scholar 

  • Mandelbrot, B., Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech. 62, 331–350, 1974.

    Article  Google Scholar 

  • Mandelbrot, B., Proc. R. Soc. London A, v. 434, p. 79, 1991.

    Article  Google Scholar 

  • Meneveau, C., Sreenivasan, K. R., Simple multifractal cascade model fro fully develop turbulence, Phys. Rev. Lett. 59, 13, 1424–1427, 1987.

    Article  Google Scholar 

  • Novikov, E.A., Appl. Math. Mech., v. 35, p. 231, 1971.

    Article  Google Scholar 

  • Novikov, E.A., Infinitely divisible distributions in turbulence, Phys. Rev. E 50, 5, R3303 - R3305, 1994.

    Article  Google Scholar 

  • Obukhov, A.M., On invariant characteristics of systems of fluid mechanicaltype, Fluid Dynam. Trans., v. 5, 2, p. 193–199, 1971.

    Google Scholar 

  • Obukhov, A.M., Dolzhansky, E.V., On simple models for simulation of nonlinear processes in convection and turbulence, Geoph. Fluid. Dyn., v. 6, p. 195–209, 1975.

    Article  Google Scholar 

  • Oono, Y., Progr. theor. phys. Suppl., v. 99, p. 165, 1989.

    Article  Google Scholar 

  • Parisi, G., Frisch, U., in Turbulence and predictability in geophysical fluid dynamics and climate dynamics, ed. by M. Ghil et al., North Holland, pp. 84–88, 1985.

    Google Scholar 

  • She, Z.S., Leveque, E., Phys. Rev. Lett., v. 72, p. 336, 1994.

    Article  Google Scholar 

  • She, Z.S., Waymire, E., Phys. Rev. Lett., v. 74, p. 262, 1995.

    Article  Google Scholar 

  • Schertzer, D., Lovejoy, S., in Turbulence and chaotic phenomena in fluids, Ed. T. Tatsumi, p. 505, North Holland, 1984.

    Google Scholar 

  • Schertzer, D., Lovejoy, S., J. Geophys. Res., v. 92, p. 9692, 1987.

    Article  Google Scholar 

  • Schertzer, D., Lovejoy, S., in Fractals, Physical origins and properties, Ed. Pietronero, p. 49, Plenum Press, New York, 1989.

    Google Scholar 

  • Schertzer, D., Lovejoy S., in Fractals in the Natural and Applied Sciences, Ed M.M. Novak, Elsevier Science B.V., pp. 325–339, 1994.

    Google Scholar 

  • Schertzer, D., Lovejoy, S., From scalar to Lie cascades: joint multifractal analysis of rain and clouds processes. -Space/Time Variability and Interdependence of Hydrological Processes, R.A. Feddes ed., Cambridge University Press, pp. 153–173, 1995.

    Google Scholar 

  • Schertzer, D., Lovejoy, S., The Multifractal Transition Route to Self-Organized Criticality, Physics Reports (to appear), 1996.

    Google Scholar 

  • Schertzer, D., Lovejoy, S., Lavallee, D., Schmitt, F., in Nonlinear Dynamics of Structures, ed. by R. Z. Sagdeev et al., 213, World Scientific, 1991.

    Google Scholar 

  • Schertzer, D., Lovejoy, S., Schmitt, F., Structures in Turbulence and Multifractal Universality, Small-Scale Structures in Three-Dimensional Hydro and Magnetohydrodynamic Turbulence, edited by M. Meneguzzi, A. Pouquet and PL Sulem, Springer-Verlag, Berlin, Lecture Notes in Physics, vol.462, pp.137–144, 1995.

    Chapter  Google Scholar 

  • Schmitt, F., Lavallee, D., Schertzer, D., Lovejoy, S., Phys. Rev. Lett., v. 68, p. 305, 1992.

    Article  Google Scholar 

  • Schmitt, F., Schertzer, D., Lovejoy, S., Brunet, Y., Fractals, v. 1, 3, pp. 568–575, 1993.

    Article  Google Scholar 

  • Yaglom, A.M., Soy. Phys. Dokl., v. 2, p. 26, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chigirinskaya, Y., Schertzer, D. (1997). Cascade of Scaling Gyroscopes: Lie Structure, Universal Multifractals and Self-Organized Criticality in Turbulence. In: Molchanov, S.A., Woyczynski, W.A. (eds) Stochastic Models in Geosystems. The IMA Volumes in Mathematics and its Applications, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8500-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8500-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8502-8

  • Online ISBN: 978-1-4613-8500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics