Three-Dimensional Burgers’ Equation as a Model for the Large-Scale Structure Formation in the Universe

  • Sergei F. Shandarin
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 85)


As galaxy redshift surveys probe deeper into the universe, they uncover ever more dramatic structures in the large-scale distribution of galaxies. In particular, the CfA2 and SSRS2 surveys to an apparent magnitude limit of 15.5 exhibit an impressive complex of sheets, filaments, and clusters. The formation of the large-scale structure in the universe results from the gravitational amplification of the primordial small perturbations of density. The primordial density perturbations are thought to be random fields originated as quantum fluctuations at the very early stage. Thus the understanding of the formation of the large-scale structure may reveal important information about the early universe and the laws of fundamental physics. One of the major obstacles to understanding the formation of the large-scale structure is the complexity of the evolution of the density inhomogeneities at the nonlinear stage when the observable structures form. One way of addressing this problem is to run three-dimensional numerical simulations. Here we review another approach based on the approximate analytic model of the nonlinear gravitational instability utilizing Burgers’ equation of the nonlinear diffusion.


Dark Matter Density Perturbation Nonlinear Diffusion Density Inhomogeneity Adhesion Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arnol’d, V.I., Shandarin, S.F., Zel’dovich, Ya.B. 1982, Astrophys. Fluid Dyn., 20, 111.Google Scholar
  2. [2]
    Beacom, J.F., Dominik, K.G., Melott, A.L., Perkins, S., and Shandarin, S.F. 1991, Astrophys. J., 372, 351.CrossRefGoogle Scholar
  3. [3]
    Burgers, J.M. 1974, The Non-linear Diffusion Equation ( Dordrecht: Reidel).Google Scholar
  4. [4]
    da Costa, L.N., Geller, M.J., Pellegrini, P.S., Latham, D.W., Fairall, A.P., Marzke, R.O., Willmer, C.N.A., Huchra, J.P., Calderon, J.H., and Kurtz, M.J. 1994, Astrophys. J. Lett., 424, Ll.CrossRefGoogle Scholar
  5. [5]
    Doroshkevich, A.G., Kotok, E.V., Novikov, I.D., Polyudov, A.N., Shandarin, S.F., and Sigov Yu.S. 1980, Mon. Not. R. astr. Soc., 192 321.Google Scholar
  6. [6]
    Geller, M., and Huchra, J. 1989, Science, 246, 897.CrossRefGoogle Scholar
  7. [7]
    Gurbatov, S.N., Saichev, A.I., and Shandarin, S.F. 1985. Soy. Phys. Doklady, 30, 921.Google Scholar
  8. [8]
    Gurbatov, S.N., Saichev A.I., and Shandarin, S.F. 1989, Mon. Not. R. astr. Soc., 236 385.Google Scholar
  9. [9]
    Klypin, A.A., and Shandarin, S.F. 1983, Mon. Not. R. astr. Soc., 204 891.Google Scholar
  10. [10]
    Kofman, L.A., Pogosyan, D.Yu., and Shandarin S.F. 1990, Mon. Not. R. astr. Soc., 242, 200.Google Scholar
  11. [11]
    Kofman, L., Pogosyan, D., Shandarin, S.F., and Melott, A.L. 1992, Astrophys. J., 393, 437.CrossRefGoogle Scholar
  12. [12]
    Kotok, E.V., and Shandarin, S.F. 1987, Soy. Astr., 64, 1144.Google Scholar
  13. [13]
    Linde, A.D. 1990, Particle Physics and Inflationary Cosmology ( Harwood, New York).Google Scholar
  14. [14]
    Melott, A.L., and Shandarin, S.F. 1993, Astrophys. J., 410, 469.CrossRefGoogle Scholar
  15. [15]
    Melott, A.L., Shandarin, S.F., and Weinberg, D.H. 1994, Astrophys. J., 428, 28.CrossRefGoogle Scholar
  16. [16]
    Nusser, A., and Dekel, A. 1990, Astrophys. J., 362, 14.CrossRefGoogle Scholar
  17. [17]
    Oort, J. 1983, Ann. Rev. Astron. Astrophys., 21, 373.CrossRefGoogle Scholar
  18. [18]
    Peebles, P.J.E. 1980, The Large-scale Structure of the Universe ( Princeton: Princeton University Press).Google Scholar
  19. [19]
    Salmi, V., and Coles, P. 1995, Physics Reports, 262, 1.CrossRefGoogle Scholar
  20. [20]
    Salmi, V., Sathyaprakash, B.S., and Shandarin, S.F. 1994, Astrophys. J., 431, 20.CrossRefGoogle Scholar
  21. [21]
    Shandarin, S.F., Doroshkevich, A.G., and Zel’dovich, Ya.B. 1983, Soy. Phys. Usp., 26, 46.CrossRefGoogle Scholar
  22. [22]
    Shandarin S.F., and Zel’dovich, Ya.B. 1989, Rev. Mod. Phys., 61, 185.CrossRefGoogle Scholar
  23. [23]
    Shandarin, S.F., Melott, A.L., McDavitt, K., Pauls, J., and Tinker, J. 1995, Phys. Rev. Lett., 75, 7.CrossRefGoogle Scholar
  24. [24]
    Weinberg, D., and Gunn, J. 1989, Astrophys. J. Lett., 352, L25.CrossRefGoogle Scholar
  25. [25]
    Weinberg, D., and Gunn, J. 1990, Mon. Not. R. astr. Soc., 247, 260.Google Scholar
  26. [26]
    White, M., Scott, D., and Silk, J. 1994 Ann. Rev. Astron. Astrophys., 32, 319.CrossRefGoogle Scholar
  27. [27]
    Zel’dovich, Ya.B. 1970, Astron. Astrophys., 5 84.Google Scholar
  28. [28]
    Zel’dovich, Ya.B., and Novikov, I.D. 1983, The Structure and Evolution of the Universe (Chicago/London: University of Chicago Press).Google Scholar
  29. [29]
    Zel’dovich, Ya.B., Mamaev, A.V., and Shandarin, S.F. 1983 Soy. Phys. Usp., 26, 77.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • Sergei F. Shandarin
    • 1
  1. 1.Department of Physics and AstronomyUniversity of KansasLawrenceUSA

Personalised recommendations