Skip to main content

Radiative Transfer in Multifractal Atmospheres: Fractional Integration, Multifractal Phase Transitions and Inversion Problems

  • Chapter
Stochastic Models in Geosystems

Abstract

This paper is devoted to studying the inhomogeneity of the radiation field resulting from propagation through a multifractal cloud field by relating the orders of singularities and codimensions of both fields. This direct relationship is of fundamental importance for climate studies, whereas the inverse problem is fundamental for remote sensing. We point out similarities between smoothing by scattering and fractional integration, showing they are exactly analogous for certain cases: 1-D medium and plane parallel atmospheres (with a few extra hypotheses). We therefore deduce that there is a limited range of singularities susceptible to exhibiting identical multifractal characteristics before any inversion. The lower bound (γD′) is defined by a first order multifractal phase transition which occurs when the dimension D′ of the fractional integration is insufficient to smooth out the singularities of the cloud field, whereas the upper bound (γs) is defined by a second-order phase transition and corresponds to the limitations induced by the finite size of the samples. These two critical singularities drastically reduce the range of relevant singularities and justify some essentially ad hoc procedures used in multifractal estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker H.W. and J.A. Davies, 1992, Solar radiative fluxes for stochastic, scale invariant Broken Cloud Fields, J. atmos. Sciences, 49, 1115–1126.

    Article  Google Scholar 

  • Borde R., 1991, Rayonnement dans les nuages multifractals, rapport de stage de D.E.A., Universite de Clermont-Ferrand II, France.

    Google Scholar 

  • Borde R., E. Gougec, C. Moraillon, D. Schertzer, 1993, Multifractal relationship betweencloud and radiation singularities,exact and asymptotic results,Annales Geophysicae, preprint volume.

    Google Scholar 

  • Bromsalen G., 1994, Radiative Transfer in lognormal multifractal clouds and analysis of cloud liquid water data, MSc, Mcgill University, Montreal (Quebec), Canada.

    Google Scholar 

  • Byrne R.N., R.C.J. Somerville, B. Subasilar, 1995, Broken-cloud enhancement of solar radiation absorption, J. Atmos. Sci.

    Google Scholar 

  • Cahalan R.F., J. H. Joseph, 1989, Fractal statistics of cloud fields, Mon. Wea. Rev., 117, 261–272.

    Article  Google Scholar 

  • Chandrasekhar S., 1950, Radiative Transfer, Oxford University Press, New York. ( Reprinted by Dover, New York, 1960 ).

    Google Scholar 

  • Cess R.D., M.H. Zhang, P. Minnis, L. Corsetti, E.G. Dutton, B.W. Forgan, D.P. Garber, W.L. Gates, J.J. Hack, E.F. Harrison, X. Jing, J.T. Kiehl, C.N. Long, J.-J. Morcrette, G.L. Potter, V. Ramanathan, B. Subasilar, C.H. Whitlock, D.F. Young, Y. Zhou, 1995, Absorption of solar radiation by clouds: Observations versus model, Science, 267, 496–499.

    Article  Google Scholar 

  • Corrsin S., 1951, On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J.Appl. Phys, 22, 469–473.

    Article  Google Scholar 

  • Davis A., S. Lovejoy, P.Gabriel, D. Schertzer, G.L. Austin, 1990, Discrete Angle Radiative Transfer Part III: Numerical results on homogeneous and fractal clouds, J. Geophys. Res., 95, 11729–11742.

    Article  Google Scholar 

  • Davis A., S. Lovejoy, D. Schertzer, 1991, Discrete Angle Radiative Transfer in a multi-fractal medium, Ed. V.V. Varadan, SPIE, 1558, 37–59.

    Google Scholar 

  • Davis A., S. Lovejoy, D. Schertzer, 1992, Supercomputer simulation of radiative transfer inside multifractal cloud models,I.R.S. 92, A. Arkin et al. Eds., 112–115.

    Google Scholar 

  • Evans K. F., 1993, A general solution for stochastic radiative transfer, G.R.L., 20, 19, 2075–2078.

    Article  Google Scholar 

  • Gabriel P., S. Lovejoy, G.L. Austin, D. Schertzer, 1986, Radiative Transfer in extremely variable fractal clouds, 6th conference on atmospheric radiation, AMS, Boston, 230–234.

    Google Scholar 

  • Gabriel P., S. Lovejoy, D. Schertzer, G.L. Austin, 1988, Multifractal analysis of resolution dependence in satellite imagery, J. Geophys. Res. 15, 1373–1376.

    Google Scholar 

  • Gabriel P., S. Lovejoy, A.Davis, D. Schertzer, G.L. Austin, 1990, Discrete Angle Radiative Transfer Part II: Renormalization approach to scaling clouds, J. Geophys. Res., 95, 11717–11728.

    Article  Google Scholar 

  • Kolmogorov A.N., 1941, Local structure of turbulence in an incompressible liquid for very large Reynolds numbers,Proc. Acad. Sci. URSS, Geochem. Sect, 30, 299–303.

    Google Scholar 

  • Kolmogorov A.N., 1962, A refinement of previous hypothesis concerning the local structure of turbulence in viscous incompressible fluid at high Reynolds numbers. J. Fluid. Mech. 13, 83, 349.

    Article  Google Scholar 

  • Lavallée D., 1991, Multifractal techniques: Analysis and simulation of turbulent fields, PhD thesis, Mcgill University, Montreal (Quebec), Canada.

    Google Scholar 

  • Lavallée D., S. Lovejoy, D. Schertzer, P. Ladoy, 1993, Nonlinear variability of landscape topography, multifractal analysis and simulation,in Fractals in geography, eds L. de Cola and N. Lam.

    Google Scholar 

  • Lévy P., 1925, Calcul des Probabilités, Gauthier Villars, Paris.

    Google Scholar 

  • Lovejoy S., D. Schertzer, 1989, Fractal clouds with discrete Angle Radiative transfer. I.R.S. 88 Eds. C. Lenoble and J.F. Geylyn, Deepak publishing, 99–102.

    Google Scholar 

  • Lovejoy S., P. Gabriel, A.Davis, D. Schertzer, G.L. Austin, 1990, Discrete Angle Radiative Transfer Part I: Scaling and similarity, universality and diffusion, J. Geophys. Res., 95, 11699–11715.

    Article  Google Scholar 

  • Lovejoy S., D. Schertzer, 1990, Multifractals, Universality classes and satellite and radar measurements of cloud and rain fields. J. Geophys. Res. 95, 2021.

    Article  Google Scholar 

  • Lovejoy S., D. Schertzer, 1991, Multifractal Analysis techniques and the rain and cloud fields from 10–1 to 106m. In Nonlinear Variability in Geophysics: Scaling and Fractals, Kluwer, Schertzer D. and Lovejoy S., 111–144.

    Google Scholar 

  • Lovejoy S., B. Watson, D. Schertzer, G. Bromsalen, 1995, Scattering in multifractal media. Proc of particle transport in Stochastic Media.

    Google Scholar 

  • L. Briggs Ed., American Nuclear Society, Portland, Or., April 30-May 4 1995, 750–760.

    Google Scholar 

  • Lovejoy S. D. Schertzer, P. Silas, 1995, Diffusion on one dimension multifractals. Submitted to Phys. Rev.Lett.

    Google Scholar 

  • Obukhov A., 1949, Structure of the temperature field in a turbulent flow,IZV. Akad Nauk. SSSR. SER. Geogr. IGeofiz. 13, 55–69.

    Google Scholar 

  • Obukhov A., 1962, Some specific features of atmospheric turbulence. J. Geophys. Res. 67, 3011.

    Article  Google Scholar 

  • Parisi G. and Frish U., 1985, A multifractal model of intermittency in turbulence and predictability in geophysical fluid dynamics and climate dynamics, North holland, Ghil M., Benzi R. and Parisi G., pp 84, 88, pp 111, 144.

    Google Scholar 

  • Pecknold S., S. Lovejoy, D. Schertzer, C. Hooge and J. F. Malouin, 1993, The simulation of universal multifractals. In Cellular Automata: Prospects in astronomy and astrophysics. World Scientific, Perdang J. M. and A. Lejeune.

    Google Scholar 

  • Ramanathan V., B. Subasilar, G.J. Zhang, W. Conant, R.D. Cess, J.T. Kiehl, H. Grassi, L. Shi, 1995, Warm pool heat budget and shortwave cloud forcing: a missing physics?, Science, 267, 499–503.

    Google Scholar 

  • Richardson L.F., 1922, Weather prediction by numerical processes, republished by Dover 1965.

    Google Scholar 

  • Schertzer D., S. Lovejoy, 1987, Physical modelling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res. D, 92, 8, 9693–9714.

    Article  Google Scholar 

  • Schertzer D., S. Lovejoy, 1988, Multifractal simulations and analysis of clouds by multi-plicative processes, Atmos. Res. 21, 337–361.

    Article  Google Scholar 

  • Schertzer D., S. Lovejoy, 1991, Nonlinear geodynamical variability: multiple singularities, universality and observables. In Nonlinear Variability In Geophysics: scaling and fractals. Kluwer, Schertzer D. and S. Lovejoy, pp 41, 82.

    Google Scholar 

  • Schertzer D., S. Lovejoy, 1995, The multifractal phase transition route to self-organised criticality. In Physics reports, to appear.

    Google Scholar 

  • Schertzer D., S. Lovejoy, D. Lavallée, F. Schmitt, 1991, Universal Hard multifractal Turbulence: Theory and Observations. In Nonlinear Dynamics of structures. World Scientific, Sagdeev R.Z. et al., 213.

    Google Scholar 

  • Schmitt F., D. Lavallée, D. Schertzer, S. Lovejoy, 1992, Empirical determination of universal multifractal exponents in turbulent velocity field, Phys. Rev. Lett., 68, 305.

    Article  Google Scholar 

  • Schmitt F., D. Schertzer, S. Lovejoy, Y. Brunet, 1993, Estimation of universal multi-fractal indices for atmospheric turbulent velocity fields, Fractals, vol 1, 3, 568–575.

    Article  Google Scholar 

  • Schmitt F., D. Schertzer, S. Lovejoy, Y. Brunet, 1994, Empirical Study of Multifractal Phase Transitions in Atmospheric turbulence, N.P.G., 1, 95–104.

    Google Scholar 

  • Schuster A., 1905, Astrophys. J., 21, 1.

    Article  Google Scholar 

  • Schwartzschild, 1906, Göttinger. Nachrichten, 41.

    Google Scholar 

  • Silas P. et al., 1993, Single phase diffusion in multifractal porous rock, proceedings Hydrofractals 1993, 1–6.

    Google Scholar 

  • Silas P., 1994, Diffusion on one dimensional multifractal, MSc, Mcgill University, Montreal (Quebec), Canada.

    Google Scholar 

  • Somerville R.C.J., C. Gauthier, 1994, Climate-Radiation Feedbacks: The Current State of the Science, in Elements of Change, Eds. S.J. Hassol and P. Norris, Aspen Global Chang Institute.

    Google Scholar 

  • Tessier Y., S. Lovejoy, Schertzer D., 1993, Universal multifractals: theory and observations for rain and clouds. J. Appl. Meteor. 32, 2, 223–250.

    Article  Google Scholar 

  • Wilson S., D. Schertzer, S. Lovejoy, 1991, Physically based modelling by multiplicative cascade processes. In Nonlinear Variability in Geophysics: scaling and fractals, Kluwer, Schertzer D. and S. Lovejoy, 185–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Naud, C., Schertzer, D., Lovejoy, S. (1997). Radiative Transfer in Multifractal Atmospheres: Fractional Integration, Multifractal Phase Transitions and Inversion Problems. In: Molchanov, S.A., Woyczynski, W.A. (eds) Stochastic Models in Geosystems. The IMA Volumes in Mathematics and its Applications, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8500-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8500-4_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8502-8

  • Online ISBN: 978-1-4613-8500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics