Skip to main content

Seismic Coda Waves: A Stochastic Process in Earth’s Lithosphere

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 85))

Abstract

Seismic coda waves are a natural wonder. Because they are formed by scattered waves from numerous heterogeneities in the lithosphere, nature does the averaging over a large volume of the earth and leads to beautiful simplicity such as the separability of seismic source, propagation path and recording site effects. In this review, we shall focus on the decay rate of coda amplitudes, called coda Q −1, and present its significance as a geophysical parameter characterizing regional structures and earthquake processes in the lithosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., Attenuation and scattering of short-period seismic waves in the lithosphere in Identification of Seismic Sources-Earthquake or Underground Explosion, ed. E.S. Husebye and S. Mykkeltveit, D. Reidel Publishing Co., (1981), pp. 515–541.

    Google Scholar 

  2. Aki, K., Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Interiors, 21 (1980), pp. 50–60.

    Google Scholar 

  3. Aki, K., Scattering conversions P to S versus S to P, Bull. Seis. Soc. Am., 82 (1992), 1969–1972.

    Google Scholar 

  4. Aki, K., Summary of discussions on coda waves at the Istanbul IASPEI meeting, Phys. Earth Planet. Inter., 67 (1991), pp. 1–3.

    Google Scholar 

  5. Aki, K., Theory of earthquake prediction with special reference to monitoring of the quality factor of lithosphere by the coda method, Earthq. Predict. Res., 3 (1985), pp. 219–230.

    Google Scholar 

  6. Chen, P. and W.O. Nuttli, Estimates of magnitude and short-period wave attenuation of Chinese earthquakes from Modified Mercali intensity data, Bull. Seis. Soc. Am., 74 (1984a) pp. 957–968.

    Google Scholar 

  7. Chen, P. and W.O. Nuttli, Estimates of short-period Q values and seismic moments from coda waves for earthquakes of the Beijing and Yunnan regions of China, Bull. Seis. Soc. Am., 74 (1984), pp. 1189–1208.

    Google Scholar 

  8. Chouet, B., Temporal variation in the attenuation of earthquake coda near Stone Canyon, Calif., Geophys. Res. Lett., 6 (1979), pp. 143–146.

    Article  Google Scholar 

  9. Faulkner, J., Temporal variation of coda Q, MS Thesis, University of Southern California, Los Angeles, (1988).

    Google Scholar 

  10. Frankel, A. and R.W. Clayton, Finite difference simulations of seismic scattering: implications for the propagation of short-period seismic waves in the crust and models of crust heterogeneity, J. Geophys. Res., 91 (1986), pp. 6465–6489.

    Article  Google Scholar 

  11. Gao, L.S. and K. Aki, Effect of finite thickness of scattering layer on coda Q of local earthquakes, J. Geodynamics, 21 (1996), pp. 191–203.

    Article  Google Scholar 

  12. Gusev, A.A. and V.K. Lemzikov, The anomalies of small earthquake coda wave characteristics before the three large earthquakes in the Kuril-Kamchatka zone (in Russian), Vulk. Seism., 4 (1984), pp. 76–90.

    Google Scholar 

  13. Herraiz, M. and A.F. Espinosa, Coda waves: a review, PAGEOPH, 125 (1987), pp. 499–577.

    Article  Google Scholar 

  14. Hoshiba, M., H. Sato, and M. Fehler, Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope: A Monte-Carlo simulation of multiple isotropic scattering, Pap. Meterol. Geophys., 42 (1991), pp. 65–91.

    Article  Google Scholar 

  15. Hoshiba, M., Separation of scattering attenuation and intrinsic absorption in Japan with the multiple lapse time window analysis from full seismogram envelope, J. Geophys. Res., 98 (1993), pp. 15809–15824.

    Article  Google Scholar 

  16. Jin, A. and K. Aki, Spatial and temporal correlation between coda Q and seismicity in China, Bull. Seis. Soc. Am., 78 (1988), pp. 741–769.

    Google Scholar 

  17. Jin, A. and K. Aki, Spatial and temporal correlation between coda Q -1 and seismicity and its physical mechanism, J. Geophys. Res., 94 (1989), pp. 14041–14059.

    Article  Google Scholar 

  18. Jin, A. and K. Aid, Temporal changes in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975, J. Geophys. Res., 91 (1986), pp. 665–673.

    Article  Google Scholar 

  19. Jin, A. and K. Aki, Temporal correlation between coda Q -1 and seismicity-evidence for a structural unit in the brittle-ductile transition zone, J. Geo-dynamics, 17 (1993), pp. 95–120.

    Google Scholar 

  20. Jin, A.K. Mayeda, D. Adams, and K Aki, Separation of intrinsic and scattering attenuation in southern California using TERRAscope data, J. Geophys. Res., 99 (1994), pp. 17835–17848.

    Google Scholar 

  21. Madden, T.R., G.A. LaTorraca, and S.K. Park, Electrical conductivity variations around the Palmdale section of the San Andreas fault zone, J. Geophys. Res., 98 (1993), pp. 795–808.

    Article  Google Scholar 

  22. Matsunami, K Laboratory tests of excitation and attenuation of coda waves using 2D models of scattering media, Phys. Earth Planet. Inter., 67 (1991), pp. 104–114.

    Google Scholar 

  23. Mayeda, K., S. Koyanagi, M. Hoshiba, K. Aki, and Y. Zeng, A comparative study of scattering, intrinsic and coda Q -1 for Hawaii, Long Valley, and central California between 1.5 and 15 Hz, J. Geophys. Res., 97 (1992), pp. 6643–6659.

    Article  Google Scholar 

  24. Novelo-Casanova, D.A., E. Berg, Y. Hsu, and C.E. Helsley, Time-space variation seismic S-wave coda attenuation (Q -1 ) and magnitude distribution (b-values) for the Petatlan earthquake, Geophys. Res. Lett., 12 (1985), pp. 789–792.

    Article  Google Scholar 

  25. Peng, J.Y., Spatial and temporal variation of coda Q -1 in California, Ph.D. thesis, University of Southern California, Los Angeles, (1989).

    Google Scholar 

  26. Rautian, T.G. and V.I. Khalturin, The use of coda for determination of the earthquake source spectrum, Bull. Seis. Soc. Am., 68 (1978), pp. 923–948.

    Google Scholar 

  27. Robinson, R., Temporal variation in coda duration of local earthquakes in the Wellington region, New Zealand, PAGEOPH, 125 (1987), pp. 579–596.

    Google Scholar 

  28. Sabine, W.C., Collected Papers on Acoustics, Harvard University Press, Cambridge, Mass., (1922).

    Google Scholar 

  29. Sato, H., A.M. Shomahmadov, V.I. Khalturin, and T.G. Rautian, Temporal change in spectral coda Q associated with the K = 13.3 earthquake of 1983 near Garm, Tadjikistan region, in Soviet Central Asia (in Japanese), (1987).

    Google Scholar 

  30. Sato, H., Amplitude attenuation of impulsive waves in random media based on travel time corrected mean wave formalism, J. Acoust. Soc. Am., 71 (1982a), pp. 559–564.

    Google Scholar 

  31. Sato, H., Attenuation of S waves in the lithosphere due to scattering by its random velocity structure, J. Geophys. Res., 87 (1982b), pp. 7779–7785.

    Article  Google Scholar 

  32. Sato, H. Temporal change in attenuation intensity before and after Eastern Yamaashi earthquake of 1983, in central Japan, J. Geophys. Res., 91 (1986), pp. 2049–2061.

    Article  Google Scholar 

  33. Sato, H., Temporal change in scattering and attenuation associated with the earthquake occurrence-a review of recent studies on coda waves, PAGEOPH, 126 (1988), pp. 465–498.

    Google Scholar 

  34. Shang, T. and L.S. Gao, Transportation theory of multiple scattering and its application to seismic coda waves of impulse source, Sci. Sinica, Series V, 31 (1988), pp. 1503–1514.

    Google Scholar 

  35. Singh, S.K. and R.B. Herrmann, Regionalization of crustal coda Q in the conti- nental United States,J. Geophys. Res., 88 (1983), pp. 527–538.

    Google Scholar 

  36. Su, F., and K. Aid, Spatial and temporal variation in coda Q -1 associated with the North Palm Springs earthquake of 1986, PAGEOPH, 133 (1990), pp. 23–52.

    Article  Google Scholar 

  37. Su, F., K. Aid, and N.N. Biswas, Discriminating quarry blasts from earthquakes using coda waves, Bull. Seis. Soc. Am., 81 (1991), pp. 162–178.

    Google Scholar 

  38. Su, F., K. Aid, T. Teng, Y. Zeng, S. Koyanagi, and K. Mayeda, The relation between site amplification factor and surficial geology in central California, Bull. Seis. Soc. Am., 82 (1992), pp. 580–602.

    Google Scholar 

  39. Tsukuda, T., Coda Q before and after the 1983 Misasa earthquake of M6.2, T.ttori Pref., Japan, PAGEOPH, 128 (1988), pp. 261–280.

    Google Scholar 

  40. Wu, R.S., Attenuation of short period seismic waves due to scattering, Geophys. Res. Lett., 9 (1982), pp. 9–12.

    Google Scholar 

  41. Zeng, Y., F. Su, and K. Aki, Scattering wave energy propagation in a medium with randomly distributed isotropic scatterers, 1. Theory, J. Geophys. Res., 96 (1991), pp. 607–619.

    Article  Google Scholar 

  42. Zeng, Y., Theory of scattered P and S waves energy in a random isotropic scattering medium, Bull. Seis. Soc. Am., 83 (1993), pp. 1264–1277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Aki, K. (1997). Seismic Coda Waves: A Stochastic Process in Earth’s Lithosphere. In: Molchanov, S.A., Woyczynski, W.A. (eds) Stochastic Models in Geosystems. The IMA Volumes in Mathematics and its Applications, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8500-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8500-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8502-8

  • Online ISBN: 978-1-4613-8500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics